Journal of Intelligent and Robotic Systems

, Volume 58, Issue 2, pp 165–189 | Cite as

Multi-Agent Formation Control Based on Bell-Shaped Potential Functions

  • Kristian Hengster-Movrić
  • Stjepan Bogdan
  • Ivica Draganjac


In this paper we analyze stability properties of multi-agent control system with an artificial potential based on bell-shaped functions. In our approach attractive and repulsive forces created by potential gradient have the same form. This particular property allows definition of target formation that is parameter invariant. Due to the fact that agents are identical, the proposed structure of formation potential is invariant to the interchange of agents configurations, hence, target in which particular agent would eventually end up, depends only on formation initial condition. It has been demonstrated that stability analysis, given for stationary targets, applies to moving targets formation as well. We show that position of unwanted stable equilibria can be controlled by a single parameter that defines an elementary potential function. This fact has been used for synthesis of an adaptation algorithm, such that arrival of agents at required formation is guarantied. Simulation results, presented at the end of the paper, confirm correctness of the proposed control scheme.


Multi-agent systems Formation control Potential navigation function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wiegerinck, W., van den Broek, B., Kappen, B.: Stochastic optimal control in continuous space-time multiagent systems. In: Proc. UIA, Cambridge, MA, USA (2006)Google Scholar
  2. 2.
    Kappen, H.J.: An introduction to stochastic control theory, path integrals and reinforcement learning. In: Proc. 9th Granada Seminar on Computational Physics: Computational and Mathematical Modeling of Cooperative Behavior in Neural Systems, American Institute of Physics Cooperative Behavior in Neural Systems (2007)Google Scholar
  3. 3.
    Bicchi, A., Pallottino, L.: On optimal cooperative conflict resolution for air traffic management systems. IEEE Trans. Intell. Transp. Syst. 1(4), 221–231 (2000)CrossRefGoogle Scholar
  4. 4.
    Desai, J.P.: Motion planning and control of cooperative robotic systems. IEEE Trans. Robot. Autom. 17(6), 905–908 (2001)CrossRefGoogle Scholar
  5. 5.
    Olfati-Saber, R., Murray, R.M.: Graph rigidity and distributed formation control of multi-vehicle systems. Proc. IEEE CDC 3, 2965–2971 (2002)Google Scholar
  6. 6.
    Bicho, E., Monteiro, S.: Formation control for multiple mobile robots: a non-linear attractor approach. Proc. IEEE/RSJ IROS 2, 2016–2022 (2003)Google Scholar
  7. 7.
    Fua, C.-H., Ge, S.S., Do, K.D., Lim, K.W.: Multirobot formations based on the queue-formation scheme with limited communication. IEEE Trans. Robot. Autom. 23(6), 1160–1169 (2007)Google Scholar
  8. 8.
    Koditscheck, D.E., Rimon, E.: Robot navigation functions on manifolds with boundary. Proc. IEEE Conf. Decis. Control 4, 3390–3395 (2003)Google Scholar
  9. 9.
    Dimarogonas, D.V., Loizou, S.G., Kyriakopoulos, K.J., Zavlanos, M.M.: Decentralized feedback stabilization and collision avoidance of multiple agents. Technical Report 04–01, Control Systems Laboratory, Mechanical Eng. Dept., National Technical University of Athens, Greece (2004)Google Scholar
  10. 10.
    Olfati-Saber, R., Murray, R.M.: Distributed cooperative control of multiple vehicle formation using structural potential functions. In: IFAC World Congress (2002)Google Scholar
  11. 11.
    Lawton, J.R.T., Beard, R.W., Young, B.J.: A decentralized approach to formation maneuvers. IEEE Trans. Robot. Autom. 19(6), 933–941 (2003)CrossRefGoogle Scholar
  12. 12.
    Tanner, H.G., Pappas, G.J., Kumar, V.: Leader-to-formation stability. IEEE Trans. Robot. Autom. 20(3), 443–455 (2004)CrossRefGoogle Scholar
  13. 13.
    Muhammad, A., Egerstedt, M.: Connectivity graphs as models of local interactions. Appl. Math. Comput. 168(1), 243–269 (2005)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Desai, J.P.: A graph theoretic approach for modelling mobile robot team formations. J. Robot. Syst. 19(8), 511–525 (2002)MATHCrossRefGoogle Scholar
  15. 15.
    Das, A.K., Ostrowski, J.P., Fierro, R., Spletzer, J., Kumar, R.V., Taylor, C.J.: A vision-based formation control framework. IEEE Trans. Robot. Autom. 18(5), 813–825 (2002)CrossRefGoogle Scholar
  16. 16.
    Elgindi, M.B.M., Langer, R.W.: On the numerical solution of perturbed bifurcation problems. Int. J. Math. Math. Sci. 18(3), 561–570 (1995)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Hermann, M., Middlemann, W., Schiller, F.: Numerical Analysis of Perturbed Bifurcation Problems. Springer, New York (1998)Google Scholar
  18. 18.
    Gazi, V., Fidan, B., Hanyan, Y.S., Koksal, M.I.: Aggregation, foraging, and formation control of swarms with non-holonomic agents using potential functions and sliding mode techniques. Turk. J. Elec. Engin. 15(2), 1–20 (2007)Google Scholar
  19. 19.
    Desai, J.P., Ostrowski, J.P., Kumar, V.: Modeling and control of formations of nonholonomic mobile robots. IEEE Trans. Robot. Autom. 17(6), 905–908 (2001)CrossRefGoogle Scholar
  20. 20.
    Leonard, N.E., Fiorelli, E.: Virtual leaders, artificial potentials and coordinated control of groups. Proc. IEEE Conf. Decis. Control 3, 2968–2973 (2001)Google Scholar
  21. 21.
    Chen, Y.Q., Wang, Z.: Formation control: a review and a new consideration. In: Proc. of 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3181–3186 (2005)Google Scholar
  22. 22.
    Orqueda, O.A.A., Zhang, X.T., Fierro, R.: An output feedback nonlinear decentralized controller for unmanned vehicle co-ordination. Int. J. Robust Nonlinear Control 17, 1106–1128 (2007)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Kristian Hengster-Movrić
    • 1
  • Stjepan Bogdan
    • 1
  • Ivica Draganjac
    • 1
  1. 1.LARICS—Laboratory for Robotics and Intelligent Control Systems, Department of Control and Computer Engineering, Faculty of EE&CUniversity of ZagrebZagrebCroatia

Personalised recommendations