On Multiple Secondary Task Execution of Redundant Nonholonomic Mobile Manipulators



This paper investigates self-motion control of redundant nonholonomic mobile manipulators, to execute multiple secondary tasks including tip-over prevention, singularity removal, obstacle avoidance and physical limits escape. An extended gradient projection method (EGPM) is proposed to determine self-motion directions, and a real-time fuzzy logic self-motion planner (FLSMP) is devised to generate the corresponding self-motion magnitudes. Unlike the task-priority allocation method and the extended Jacobian method, the proposed scheme is simple to implement and is free from algorithm singularities. The proposed dynamic model is established with consideration of nonholonomic constraints of the mobile platform, interactive motions between the mobile platform and the onboard manipulator, as well as self-motions allowed by redundancy of the entire robot. Furthermore, a robust adaptive neural-network controller (RANNC) is developed to accomplish multiple secondary tasks without affecting the primary one in the workspace. The RANNC does not rely on precise prior knowledge of dynamic parameters and can suppress bounded external disturbance effectively. In addition, the RANNC does not require any off-line training and can ensure the control performance by online adjusting the neural-network parameters through adaptation laws. The effectiveness of the proposed algorithm is verified via simulations on a three-wheeled redundant nonholonomic mobile manipulator.


Mobile manipulator Redundant robot Neural-network control Adaptive control Self-motion control 


  1. 1.
    Jamisola, R., Ang, M.H. Jr., Oetomo, D., Khatib, O., Lim, T.M., Lim, S.Y.: The operational space formulation implementation to aircraft canopy polishing using a mobile manipulator. In: Proc. of IEEE Intl. Conf. on Rob. and Autom., pp. 400–405. Washington, DC (2002)Google Scholar
  2. 2.
    Kurabayashi, D., Ota, J., Arai, T., Yoshida, E.: Cooperative sweeping by multiple mobile robots. In: Proc. of IEEE Intl. Conf. on Rob. and Autom., pp. 1744–1749. Minneapolis, Minnesota (1996)Google Scholar
  3. 3.
    Yu, Q., Chen, I.: A general approach to the dynamics of nonholonomic mobile manipulator systems. ASME Trans. Dyn. Syst. Meas. Control 124(4), 512–521 (2002)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Chung, J.H., Velinsky, S.A., Hess, R.A.: Interaction control of a redundant mobile manipulator. Int. J. Rob. Res. 17(12), 1302–1309 (1998)CrossRefGoogle Scholar
  5. 5.
    Yamamoto, Y., Yun, X.: Effect of the dynamic interaction on coordinated control of mobile manipulators. IEEE Trans. Robot. Autom. 12(5), 816–824 (1996)CrossRefGoogle Scholar
  6. 6.
    Rey, D.A., Papadopoulos, E.: On-line automatic tipover prevention for mobile manipulators. In: Proc. IEEE/RSJ Conf. Intell. Robots and Syst., pp. 1273–1278. Grenoble, France (1997)Google Scholar
  7. 7.
    Li, Y., Liu, Y.: A new task-consistent overturn prevention algorithm for redundant mobile modular manipulators. In: Proc. of IEEE/RSJ Intl. Conf. on Intelligent Rob. Syst., pp. 1563–1568. Alberta, Canada (2005)Google Scholar
  8. 8.
    Li, Y., Liu, Y.: Real-time tip-over prevention and path following control for redundant nonholonomic mobile modular manipulators via fuzzy and neural-fuzzy approaches. ASME Trans. Dyn. Syst. Meas. Control 128(4), 753–764 (2006)CrossRefGoogle Scholar
  9. 9.
    Tan, J., Xi, N., Wang, Y.: Integrated task planning and control for mobile manipulators. Int. J. Rob. Res. 22(5), 337–354 (2003)CrossRefGoogle Scholar
  10. 10.
    Papadopoulos, E., Poulakakis, I., Papadimitriou, I.: On path planning and obstacle avoidance for nonholonomic platforms with manipulators: a polynomial approach. Int. J. Rob. Res. 21(4), 367–383 (2002)CrossRefGoogle Scholar
  11. 11.
    Carriker, W.F., Khosla, P.K., Krogh, B.H.: Path Planning for mobile manipulators for multiple task execution. IEEE Trans. Robot. Autom. 7(3), 403–408 (1991)CrossRefGoogle Scholar
  12. 12.
    Tanner, H.G., Loizou, S.G., Kyriakopoulos, K.J.: Nonholonomic navigation and control of cooperating mobile manipulators. IEEE Trans. Robot. Autom. 19(1), 53–64 (2003)CrossRefGoogle Scholar
  13. 13.
    Sugar, T.G., Kumar, V.: Control of cooperating mobile manipulators. IEEE Trans. Robot. Autom. 18(1), 94–103 (2002)CrossRefGoogle Scholar
  14. 14.
    Brock, O., Khatib, O., Viji, S.: Task-consistent obstacle avoidance and motion behavior for mobile manipulation. In: Proc. of IEEE Intl. Conf. on Rob. and Autom., pp. 388–393. Washington DC, USA (2002)Google Scholar
  15. 15.
    De Luca, A., Oriolo, G., Giordano, P.R.: Kinematic modeling and redundancy resolution for nonholonomic mobile manipulators. In: Proc. of IEEE Intl. Conf. on Rob. and Autom., pp. 1867–1873. Orlando, Florida (2006)Google Scholar
  16. 16.
    Assal, S.F.M., Watanabe, K., Izumi, K.: Neural network-based kinematic inversion of industrial redundant robots using cooperative fuzzy hint for the joint limits avoidance. IEEE/ASME Trans. Mechatron. 11(5), 593–603 (2006)CrossRefGoogle Scholar
  17. 17.
    Chan, T.F., Dubey, R.V.: A weighted least-norm solution based scheme for avoiding joint limits for redundant joint manipulators. IEEE Trans. Robot. Autom. 11(2), 286–292 (1995)CrossRefGoogle Scholar
  18. 18.
    Liu, Y., Li, Y.: A new method of executing multiple auxiliary tasks by redundant nonholonomic mobile manipulators. In: Proc. IEEE/RSJ Intl. Conf. on Intelligent Rob. and Syst., pp. 1–6. Beijing, China (2006)Google Scholar
  19. 19.
    Cheng, F.T., Lu, Y.T., Sun, Y.Y.: Window-shaped obstacle avoidance for a redundant manipulator. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 28(6), 806–815 (1998)CrossRefGoogle Scholar
  20. 20.
    Maciejewski, A.A., Klein, C.A.: Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments. Int. J. Rob. Res. 4(3), 109–117 (1985)CrossRefGoogle Scholar
  21. 21.
    Chiaverini, S.: Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators. IEEE Trans. Robot. Autom. 13(3), 398–410 (1997)CrossRefGoogle Scholar
  22. 22.
    Kim, J., Marani, G., Chung, W.K., Yuh, J., Oh, S.R.: Dynamic task priority approach to avoid kinematic singularity for autonomous manipulation. In: Proc. of IEEE/RSJ Intl. Conf. on Intell. Rob. and Syst., pp. 1942–1947. Switzerland (2002)Google Scholar
  23. 23.
    Nenchev, D.N., Tsumaki, Y., Uchiyama, M.: Singularity-consistent parameterization of robot motion and control. Int. J. Rob. Res. 19(2), 159–182 (2000)CrossRefGoogle Scholar
  24. 24.
    Jamisola, R.S., Maciejewski, A.A., Roberts, R.G.: Failure-tolerant path planning for kinematically redundant manipulators anticipating locked-joint failures. IEEE Trans. Robot. 22(4), 603–612 (2006)CrossRefGoogle Scholar
  25. 25.
    Ding, H., Tso, S.K.: A fully neural-network-based planning scheme for torque minimization of redundant manipulators. IEEE Trans. Ind. Electron. 46(1), 199–206 (1999)CrossRefGoogle Scholar
  26. 26.
    Ma, S.: A new formulation technique for local torque optimization of redundant manipulators. IEEE Trans. Ind. Electron. 43(4), 462–468 (1996)CrossRefGoogle Scholar
  27. 27.
    Gravagne, I., Walker, I.D.: On the structure of minimum effort solutions with application to kinematic redundancy resolution. IEEE Trans. Robot. Autom. 16(6), 855–863 (2000)CrossRefGoogle Scholar
  28. 28.
    Klein, C.A., Chu-Jenq, C., Ahmed, S.: A new formulation of the extended jacobian method and its use in mapping algorithmic singularities for kinematically redundant manipulators. IEEE Trans. Robot. Autom. 11(1), 50–55 (1995)CrossRefGoogle Scholar
  29. 29.
    Oh, Y., Chung, W.K.: Disturbance-observer-based motion control of redundant manipulators using inertially decoupled dynamics. IEEE/ASME Trans. Mechatron. 4(2), 133–146 (1999)CrossRefGoogle Scholar
  30. 30.
    Maciejewski, A.A., Klein, C.A.: The singular value decomposition: computation and applications to robotics. Int. J. Rob. Res. 8(6), 63–79 (1989)CrossRefGoogle Scholar
  31. 31.
    Chang, P.H., Park, K.C., Lee, S.: An extension to operational space for kinematically redundant manipulators: kinematics and dynamics. IEEE Trans. Robot. Autom. 16(5), 592–596 (2000)CrossRefGoogle Scholar
  32. 32.
    O’Neil, K.: Divergence of linear acceleration-based redundancy resolution schemes. IEEE Trans. Robot. Autom. 18(4), 625–631 (2002)CrossRefGoogle Scholar
  33. 33.
    Park, J., Chung, W.K., Youm, Y.: Characterization of instability of dynamic control for kinematically redundant manipulators. In: Proc. of IEEE Intl. Conf. on Rob. and Autom., pp. 2400–2405. Washington DC (2002)Google Scholar
  34. 34.
    Slotine, J.J.E., Li, W.: On the adaptive control of robot manipulators. Int. J. Rob. Res. 6(3), 49–59 (1987)CrossRefGoogle Scholar
  35. 35.
    Cheah, C.C., Liu, C., Slotine, J.J.J.E.: Adaptive Jacobian tracking control of robots with uncertainties in kinematic, dynamic and actuator models. IEEE Trans. Automat. Contr. 51(6), 1024–1029 (2006)CrossRefMathSciNetGoogle Scholar
  36. 36.
    Ge, S.S., Hang, C.C., Woon, L.C.: Adaptive neural network control of robot manipulators in task space. IEEE Trans. Ind. Electron. 44(6), 746–752 (1997)CrossRefGoogle Scholar
  37. 37.
    Ge, S.S., Lee, T.H., Harris, C.J.: Adaptive Neural Network Control of Robotic Manipulators. World Scientic, Singapore (1998)Google Scholar
  38. 38.
    Lewis, F.L., Yesildirek, A., Liu, K.: Multilayer neural-net robot controller with guaranteed tracking performance. IEEE Trans. Neural Netw. 7(2), 388–399 (1996)CrossRefGoogle Scholar
  39. 39.
    Fierro, R., Lewis, F.L.: Control of a nonholonomic mobile robot using neural networks. IEEE Trans. Neural Netw. 9(4), 589–600 (1998)CrossRefGoogle Scholar
  40. 40.
    Sheng, L., Goldenberg, A.: Neural-network control of mobile manipulators. IEEE Trans. Neural Netw. 12(5), 1121–1133 (2001)CrossRefGoogle Scholar
  41. 41.
    Kiguchi, K., Fukuda, T.: Intelligent position/force controller for industrial robot manipulators—application of fuzzy neural networks. IEEE Trans. Ind. Electron. 44(6), 753–761 (1997)CrossRefGoogle Scholar
  42. 42.
    Liu, Y., Li, Y.: Sliding mode adaptive neural-network control for nonholonomic mobile modular manipulators. J. Intell. Robot. Syst. 44(3), 203–224 (2005)CrossRefGoogle Scholar
  43. 43.
    de Wit, C.C., Siciliano, B., Bastin, G.: Theory of Robot Control. Springer, New York (1996)MATHGoogle Scholar
  44. 44.
    Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press, Cambridge (1991)MATHGoogle Scholar
  45. 45.
    Gupta, M.M., Jin, L., Homma, N.: Static and Dynamic Neural Networks—From Fundamentals to Advanced Theorey. Wiley, New York (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Aerospace EngineeringRyerson UniversityTorontoCanada

Personalised recommendations