Journal of Intelligent and Robotic Systems

, Volume 56, Issue 1–2, pp 5–21 | Cite as

Distributed Constraint Force Approach for Coordination of Multiple Mobile Robots

  • Yunfei Zou
  • Prabhakar R. Pagilla


A new approach to coordination of multiple mobile robots is presented in this paper. The approach relies on the notion of constraint forces which are used in the development of the dynamics of a system of constrained particles with inertia. A familiar class of dynamic, nonholonomic robots are considered. The goal is to design a distributed coordination control algorithm for each robot in the group to achieve, and maintain, a particular formation while ensuring navigation of the group. The theory of constraint forces is used to generate a stable control algorithm for each mobile robot that will achieve, and maintain, a given formation. The advantage of the proposed method is that the formation keeping forces (constraint forces) cancel only those applied forces which act against the constraints. Another feature of the proposed distributed control algorithm is that it allows to add/remove other mobile robots into/from the formation gracefully with simple modifications of the control input. Further, the algorithm is scalable. To corroborate the theoretical approach, simulation results on a group of six robots are shown and discussed.


Multi-agent systems Distributed control Mobile robots Coordination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chang, D.E., Marsden, J.E.: Gyroscopic forces and collision avoidance with convex obstacles. In: Kang, M.X.W., Borges C. (eds.) New Trends in Nonlinear Dynamics and Control, and their Applications, pp. 145–160. Springer, New York (2003)Google Scholar
  2. 2.
    Dimarogonas, D.V., Loizou, S.G., Kyriakopoulos, K.J., Zavlanos, M.M.: A feedback stabilization and collision avoidance scheme for multiple independent non-point agents. Automatica 42(2), 229–243 (2006)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Dunbar, W.B., Murray, R.M.: Distributed receding horizon control for multi-vehicle formation stabilization. Automatica 42(4), 549–558 (2006)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Godsil, C., Royle, G.: Algebraic Graph Theory. Springer, New York (2001)MATHGoogle Scholar
  5. 5.
    Goldstein, H.: Classical Mechanics. Addison-Wesley, Reading (1953)Google Scholar
  6. 6.
    Lawton, J.R., Beard, R.W., Young, B.J.: A decentralized approach to formation maneuvers. IEEE Trans. Robot. Autom. 19(6), 933–941 (2003)CrossRefGoogle Scholar
  7. 7.
    Leonard, N.E., Fiorello, E.: Virtual leader, artificial potentials and coordinated control of groups. In: Proceedings of the 40th IEEE Conference on Decision and Control, pp. 2968–2973. IEEE, Piscataway (2001)Google Scholar
  8. 8.
    Liang, Y., Lee, H.H.: Decentralized formation control and obstacle avoidance for multiple robots with nonholonomic constraints. In: Proceedings of the American Control Conference, pp. 5596–5601, Minneapolis, 14–16 June 2006Google Scholar
  9. 9.
    Loizou, S.G., Dimarogonas, D.V., Kyriakopoulos, K.J.: Decentralized feedback stabilization of multiple nonholonomic agents. In: Proceedings of IEEE International Conference on Robotics and Automation, New Orleans, 26 April–1 May 2004Google Scholar
  10. 10.
    Murray, R., Sastry, S.: Nonholonomic motion planning-steering using sinusoids. IEEE Trans. Automat. Control 38, 700–716 (1993)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Ogren, P., Fiorelli, E., Leonard, N.E.: Cooperative control of mobile sensor networks: adaptive gradient climbing in a distributed environment. IEEE Trans. Automat. Control 49(8), 1292–1302 (2004)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Olfati-Saber, R., Murray, R.M.: Distributed cooperative control of multiple vehicle formations using structural potential functions. In: The 15th IFAC World Congress, Barcelona, 21–26 July 2002Google Scholar
  13. 13.
    Olfati-Saber, R., Murray, R.M.: Distributed structural stabilization and tracking for formations of dynamic multi-agents. In: Proceedings of the 41th IEEE Conference on Decision and Control, pp. 209–215. IEEE, Piscataway (2002)Google Scholar
  14. 14.
    Pomet, J.B., Thuilot, B., Bastin, G., Campion, G.: A hybrid strategy for the feedback stabilization of nonholonomic mobile robots. In: Proceedings of the 1992 IEEE International Conference on Robotics and Automation, pp. 129–133. IEEE, Piscataway (1992)CrossRefGoogle Scholar
  15. 15.
    Rimon, E., Koditschek, D.E.: Exact robot navigation using artificial potential function. IEEE Trans. Robot. Autom. 8(5), 501–518 (1992)CrossRefGoogle Scholar
  16. 16.
    Stipanovic, D.M., Hokayem, P.F., Spong, M.W., Siljak, D.D.: Cooperative avoidance control for multiagent systems. ASME J. Dyn. Syst. Meas. Control 129, 699–707 (2007)CrossRefGoogle Scholar
  17. 17.
    Tanner, H.G., Jadbabaie, A., Pappas, G.J.: Flocking in teams of nonholonomic agents. In: Morse, N.L.S., Kumar, V. (eds.) Cooperative Control, pp. 229–239. Springer, New York (2004)Google Scholar
  18. 18.
    Tanner, H.G., Kyriakopoulos, K.J.: Discontinuous backstepping for stabilization of nonholonomic mobile robots. In: Proceedings of the 2002 IEEE International Conference on Robotics and Automation, pp. 3948–3953. IEEE, Piscataway (2002)Google Scholar
  19. 19.
    Udwadia, F., Kalaba, R.E.: Analytical Dynamics, A New Approach. Cambridge University Press, Cambridge (1996)Google Scholar
  20. 20.
    Witkin, A., Gleicher, M., Welch, W.: Interactive dynamics. Computer Graph. 24(2), 11–21 (1990)CrossRefGoogle Scholar
  21. 21.
    Yun, X., Yamamoto, Y.: Stability analysis of the internal dynamics of a wheeled mobile robots. J. Robot. Syst. 14(10), 697–709 (1997)MATHCrossRefGoogle Scholar
  22. 22.
    Zou, Y., Pagilla, P.R., Misawa, E.A.: Formation of a group of vehicles with full information using constraint forces. ASME J. Dyn. Syst. Meas. Control 129, 654–661 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.School of Mechanical and Aerospace EngineeringOklahoma State UniversityStillwaterUSA

Personalised recommendations