Slope Perception from Monoscopic Field Images: Applications to Mobile Robot Navigation

  • Zhen Xiang
  • Geb W. Thomas
  • Kristopher M. Thornburg
  • Nathalie Cabrol
  • Edmond Grin
  • Robert C. Anderson


When remotely navigating a mobile robot, operators must estimate the slope of local terrain in order to avoid areas that are too steep to climb or that slope so steeply downward that the operator would lose control of the rover. Although many rovers are equipped with sensor systems to aid the operator in this task, it is sometimes necessary to estimate slopes from two-dimensional images, either when planning operations or when the operator wishes to monitor the results of a sensor system. This experiment compares the operator’s estimates of the slope in Martian terrain with the actual slope determined from three-dimensional data. The ten participants overestimated the slope of the indicated regions by an average of 19° (SD 16°). An analytic model of the error, based on psychophysical analysis, accurately predicts the average magnitude of the errors. Implementation of this model eliminates an average amount of participant error. However, the large estimate variance within and between participants and images still poses a challenge for accurate slope estimation.


Slope perception Slope estimation Robotic teleoperation Slope perception model Image perception 


  1. 1.
    Burke, J., Murphy, R., Coovert, M., Riddle, D.: Moonlight in Miami: field study of human–robot interaction in the context of an urban search and rescue disaster response training exercise. Hum. Comput. Interact. 19(1), 85–116 (2004)CrossRefGoogle Scholar
  2. 2.
    Casper, J., Murphy, R.: Human–robot interactions during the robot-assisted urban search and rescue response at the World Trade Center. IEEE Trans. Syst. Man Cybern. Part B Cybern. 33(3), 367–385 (2003)CrossRefGoogle Scholar
  3. 3.
    Creem-Regehr, S.H., Gooch, A.A., Sahm, C.S., Thompson, W.B.: Perceiving virtual geographical slant: action influences perception.∼sc4002/pubs.htm (2003). Accessed 27 January 2004
  4. 4.
    Drury, J., Scholtz, J., Yanco, H.: Awareness in human–robot interactions. In: IEEE International Conference on Systems, Man and Cybernetics (2003)Google Scholar
  5. 5.
    Epstein, W., Park, J.: Gibson’s psychophysical hypothesis. Psychol. Bull. 62(3), 180–196 (1964)CrossRefGoogle Scholar
  6. 6.
    Gibson, J.J.: The perception of visual surfaces. Am. J. Psychol. 63, 367–384 (1950)CrossRefGoogle Scholar
  7. 7.
    Kanduri, A.K., Thomas, G., Cabrol, N., Grin, E., Anderson, R.C.: The (in)accuracy of novice rover operators’ perception of obstacle height from monoscopic images. IEEE Trans. Syst. Man Cybern. Part A 35(4), 505–512 (2005)CrossRefGoogle Scholar
  8. 8.
    Lewis, M., Wang, J., Hughes, S., Liu X.: Experiments with attitude: attitude displays for teleoperation. In: IEEE International Conference on Systems, Man and Cybernetics (2003)Google Scholar
  9. 9.
    NASA: Planetary Data System Database, Mars Pathfinder IMP imager, Presidential Panorama. (2003). Accessed 11 November 2003
  10. 10.
    Perrone, J.A.: Slant underestimation: a model based on the size of the viewing aperture. Perception 9, 285–302 (1980)CrossRefGoogle Scholar
  11. 11.
    Perrone, J.A.: Visual slant underestimation: a general model. Perception 11, 641–654 (1982)CrossRefGoogle Scholar
  12. 12.
    Perrone, J.A., Wenderoth, P.M.: Visual slant underestimation. In: Ellis, S.R. (ed.) Pictorial Communication in Virtual and Real Environments, pp. 496–503. Taylor & Francis, London (1981)Google Scholar
  13. 13.
    Proffitt, D.R., Bhalla, M., Gossweiler, R., Midgett, J.: Perceiving geographical slant. Psychon. Bull. Rev. 2(4), 409–428 (1995)Google Scholar
  14. 14.
    Proffitt, D.R., Creem, S.H., Zosh, W.D.: Seeing mountains in mole hills: geographical-slant perception. Psychol. Sci. 12(5), 418–423 (2001)CrossRefGoogle Scholar
  15. 15.
    Sheridan, T.: Telerobotics, Automation, and Human Supervisory Control. MIT Press, Cambridge (1992)Google Scholar
  16. 16.
    Smith, A.H.: Outline convergence versus closure in the perception of slant. Percept. Mot. Skills 9, 259–266 (1959)CrossRefGoogle Scholar
  17. 17.
    Steinfeld, A.: Interface lessons for fully and semi-autonomous mobile robots. IEEE Int. Conf. Robot. Autom. 3, 2752–2757 (2004)Google Scholar
  18. 18.
    van Erp, J.: Trade-offs between spatial and temporal resolution in driving unmanned ground vehicles. In: Proceedings of the Human Factors and Ergonomics Society 42nd Annual Meeting, pp. 1550–1554 (1998)Google Scholar
  19. 19.
    Woods, D.D., Tittle, J., Feil, M., Roesler, A.: Envisioning human–robot coordination in future operations. IEEE Trans. Syst. Man Cybern. Part C 34(2), 210–218 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Zhen Xiang
    • 1
  • Geb W. Thomas
    • 1
  • Kristopher M. Thornburg
    • 1
  • Nathalie Cabrol
    • 2
  • Edmond Grin
    • 2
  • Robert C. Anderson
    • 3
  1. 1.The University of IowaIowa CityUSA
  2. 2.NASA Ames/SETIMoffett FieldUSA
  3. 3.Jet Propulsion LaboratoryPasadenaUSA

Personalised recommendations