Advertisement

Journal of Intelligent and Robotic Systems

, Volume 52, Issue 3–4, pp 489–513 | Cite as

From Embodied Agents or Their Environments Reasoning About the Body, to Virtual Models of the Human Body: A Quick Overview

  • Ephraim Nissan
Article

Abstract

This article provides an overview of such embodied agents that reason about the body, e.g., self-reconfiguring robots, and of research into recognizing a body part as belonging to one’s own body, on the part of robotic agents (vs. animals). More sketchily, we also consider such animated avatars whose movements imitate human body movements, and virtual models of the human body.

Keywords

Embodied agents Virtual models Human body Self-reconfiguring robots 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acosta Calderon, C.A., Hu, H.: Robot imitation: a matter of body representation. In: Proceedings of the International Symposium on Robotics and Automation, Querétaro, Mexico, 25–27 August 2004Google Scholar
  2. 2.
    Acosta Calderon, C.A., Hu, H.: Robot imitation from human body movements. In: Proceedings of the Third International Symposium on Imitation in Animals and Artifacts, at the AISB’05 Convention, pp. 1–9, 12–15. University of Hertfordhire, Hatfield England (2005)Google Scholar
  3. 3.
    Aubel, A., Thalmann, D.: MuscleBuilder: a modeling tool for human anatomy. J. Comput. Sci. Technol. 19, 585–595 (2004) (posted at http://vrlab.epfl.ch/Publications of the Virtual Reality Lab at the Swiss Federal Institute of Technology in Lausanne)Google Scholar
  4. 4.
    Bach-y-Rita, P., Kercel, S.W.: Sensory substitution and the human–machine interface. Trends Cogn. Sci. 7(12), 541–546 (2003) (posted on the Web)CrossRefGoogle Scholar
  5. 5.
    Bach-y-Rita, P., Kaczmarek, K.A., Tyler, M.E.: A tongue-based tactile display for portrayal of environmental characteristics. In: Hettlinger, L.J., Haas, M.W. (eds.) Virtual and Adaptive Environments, pp. 169–186. Erlbaum, Mahwah, NJ (2003)Google Scholar
  6. 6.
    Bach-y-Rita, P., Tyler, M.E., Kaczmarek, K.A.: Seeing with the brain. Int. J. Hum.-Comput. Interact. 15, 285–295 (2003)CrossRefGoogle Scholar
  7. 7.
    Bar-Cohen, Y. (ed.): Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential and Challenges, vol. PM136, 2nd edn. SPIE, Bellingham (2004)Google Scholar
  8. 8.
    Bererton, C., Khosla, P.K.: Towards a team of robots with repair capabilities: a visual docking system. In: Experimental Robotics VII, pp. 333–342. Waikiki, 11–13 December 2000Google Scholar
  9. 9.
    Bererton, C., Khosla, P.K.: Towards a team of robots with reconfiguration and repair capabilities. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 3, pp. 2923–2928. IEEE, Piscataway (2001)Google Scholar
  10. 10.
    Biever, C.: The robots with a sense of self. New Sci. 194(2604), 30–31 (19 May 2007)CrossRefGoogle Scholar
  11. 11.
    Biever, C.: Not that impressed by Nico’s mirror test. New Sci. 194(2604), 30–31 (19 May 2007)CrossRefGoogle Scholar
  12. 12.
    Bojinov, H., Casal, A., Hoag, T.: Emergent structures in modular self-reconfigurable robots. In: Proceedings of the of IEEE International Conference on Robotics and Automation, vol. 2, pp. 1734–1741. IEEE, Piscataway (2000)Google Scholar
  13. 13.
    Bruce, V.: Perceiving and recognizing faces. In: Humphreys, G.W. (ed.) Understanding Vision, pp. 87–103. Blackwell, Oxford (1992)Google Scholar
  14. 14.
    Butler, Z., Byrnes, S., Rus, D.: Distributed motion planning for modular robots with unit-compressible modules. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems, pp. 790–796. IEEE, Piscataway (2001)Google Scholar
  15. 15.
    Butler, Z., Kotay, K., Rus, D., Tomita, K.: Cellular automata for decentralized control of self-reconfigurable robots. In: ICRA 2001 Workshop on Modular Self-Reconfigurable Robots, Seoul, 21–26 May 2001Google Scholar
  16. 16.
    Casal, A.: Multiagent control of self-reconfigurable robots. In: Proceedings of the Fourth International Conference on MultiAgent Systems (ICMAS-2000). IEEE Computer Society, 2000, p. 143, Boston, 10–12 July 2000Google Scholar
  17. 17.
    Cassinis, R., Morelli, L.M., Nissan, E.: Emulation of human feelings and behaviours in an animated artwork. Int. J. Artif. Intell. Tools 16(2), 291–375 (2007) (full-page contents of the article on p. 158)CrossRefGoogle Scholar
  18. 18.
    Castano, A., Shen, W.M., Will, P.: Towards deployable robots with inter-robots metamorphic capabilities. Auton. Robots 8(3), 309–324 (2000a)CrossRefGoogle Scholar
  19. 19.
    Castano, A., Chokkalingam, R., Will, P.: Autonomous and self-sufficient Conro modules for reconfigurable robots. In: Proceedings of the 5th International Symposium on Distributed Autonomous Robotic Systems, pp. 155–164. Knoxville, October (2000b)Google Scholar
  20. 20.
    Chalmers, D.J.: Consciousness and its place in nature. Ch. 5. In: Stich, S.P., Warfield, T.A. (eds.) The Blackwell Guide to Philosophy of Mind (Blackwell Philosophy Guides, 10), pp. 102–142. Blackwell, Oxford (2003)CrossRefGoogle Scholar
  21. 21.
    Chen, I.-M., Burdick, J.: Enumerating the non-isomorphic assembly configurations of modular robotic systems. In: Proceeding of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1985–1992. IEEE, Piscataway (1993)Google Scholar
  22. 22.
    Chirikjian, G.: Metamorphic hyper-redundant manipulators. In: Proceedings of the International Conference on Advanced Mechatronics, pp. 467–472, Tokyo, 2–4 August 1993Google Scholar
  23. 23.
    Chirikjian, G.: Kinematics of a metamorphic robotic system. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 449–455. IEEE, Piscataway (1994)Google Scholar
  24. 24.
    Chirikjian, G., Pamecha, A.: Bounds for self-reconfiguration of metamorphic robots. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1452–1457. IEEE, Piscataway (1996)Google Scholar
  25. 25.
    Chirikjian, G., Pamecha, A., Ebert-Uphoff, I.: Evaluating efficiency of self-reconfiguration in a class of modular robots. J. Robot. Syst. 13(5), 317–338 (1996)MATHCrossRefGoogle Scholar
  26. 26.
    Cipolla, R., Okamoto, Y., Kuno, Y.: Qualitative visual interpretation of 3D hand gestures using motion parallax. In: Proceedings of the IAPR Workshop on Machine Vision Applications, pp. 477–482. Tokyo, December (1992)Google Scholar
  27. 27.
    Cipolla, R., Stenger, B., Thayananthan, A., Torr, P.H.S.: Model-based tracking of articulated hand motion in clutter. In: Proceeding 10th IMA Conference on The Mathematics of Surfaces, LNCS. Springer-Verlag, Berlin (2003)Google Scholar
  28. 28.
    Corbin, A., Courtine, J.-J., Vigarello, G. (eds.): Histoire du corps (du XVIe siècle au XXe siècle) (3 vols.). Paris: Le Seuil, 2005. Including the vols.: De la Renaissance aux Lumières, vol. 1, ed. G. Vigarello; De la Révolution à la Grande Guerre, vol. 2, ed. A.Corbin; and Les mutations du regard: Le XX e siècle, vol. 3, ed. J.-J. Courtine.Google Scholar
  29. 29.
    Courtine, J.-J., Haroche, C.: Histoire du visage: exprimer et taire ses émotions (du XVIe au debut du XIXe siècle). Rivages/Histoire, Paris (1988); Petite bibliothèque Payot, Payot, Paris (1994, paperback). Italian edn., Sellerio, Palermo (1992). Portuguese edn., Teorema, Lisbon (1995).Google Scholar
  30. 30.
    Dorigo, M., Trianni, V., Şahin, E., Groβ, R., Labella, T.H., Baldassarre, G., Nolfi, S., Deneubourg, J.-L., Mondada, F., Floreano, D., Gambardella, L.M.: Evolving self-organizing behaviors for a swarm-bot. Auton. Robots 17(2/3), 223–245 (2004)CrossRefGoogle Scholar
  31. 31.
    Durfee, E.H.: Scaling up agent coordination strategies. Computer 34(7), 39–46 (2001)CrossRefGoogle Scholar
  32. 32.
    EnVision: Computational anatomy: an emerging discipline. EnVision 18(3), (2002) (National Partnership for Advanced Computational Infrastructure (http://www.npaci.edu/enVision/v18.3/anatomy.html))
  33. 33.
    Epstein, R., Lanza, R.P., Skinner, B.F.: “Self-awareness” in the pigeon. Science 212, 695–696 (1981)CrossRefGoogle Scholar
  34. 34.
    ERCIM News: The digital patient. Special issue, ERCIM News, 69 (April 2007). Downloadable from the site http://www.ercim.org/publication/Ercim_News/ of the European Research Consortium for Informatics and Mathematics
  35. 35.
    Fei, Y., Zhao, X.: Design and dock analysis for the interactive module of a lattice-based self-reconfigurable robot. Robot. Auton. Syst. 55(2), 87–95 (2007)CrossRefGoogle Scholar
  36. 36.
    Fetzer, J.H. (ed.): Evolving Consciousness (Advances in Consciousness Research Series). John Benjamins, Amsterdam (1997)Google Scholar
  37. 37.
    Fleming, N.: A Bit Robotic, Maybe, But it Learns Quickly. The Daily Telegraph, p. 15. London, 9 August 2007Google Scholar
  38. 38.
    Fukuda, T., Kawauchi, Y.: Cellular Robotic System (CEBOT) as one realization of a self-organizing intelligent universal manipulator. In: Proceedings of the 1990 IEEE Conference on Robotics and Automation, pp. 662–667. Cincinnati, Ohio, 13–18 May 1990Google Scholar
  39. 39.
    Fukuda, T., Nakagawa, S.: A dynamically reconfigurable robotic system (concept of a system and optimal configurations). In: Proceedings of the IEEE International Conference on Industrial Electronics, Control and Instrumentation, pp. 588–595. IEEE, Piscataway (1998)Google Scholar
  40. 40.
    Fukuda, T., Nakagawa, S., Kawauchi, Y., Buss, M.: Self organizing robots based on cell structures—CEBOT. In: Proceedings of the IEEE International Workshop on Intelligent Robots, pp. 145–150. IEEE, Piscataway (1988)CrossRefGoogle Scholar
  41. 41.
    Fukuda, T., Ueyama, T., Kawauchi, Y.: Self-organization in cellular robotic system (CEBOT) for space application with knowledge allocation method. In: Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space, pp. 101–104. Kobe, Japan, 1990Google Scholar
  42. 42.
    Fukuda, T., Ueyama, T.: Cellular Robotics and Micro Robotics Systems. World Scientific, Singapore (1994)Google Scholar
  43. 43.
    Gallup, G.: Self-awareness and the emergence of mind in primates. Am. J. Primatol. 2, 237–248 (1982)CrossRefGoogle Scholar
  44. 44.
    Gee, A.H., Cipolla, R.: Estimating gaze from a single view of a face. In: Proceedings of the IAPR 12th International Conference on Pattern Recognition, pp. 758–760. Jerusalem (October 1994)Google Scholar
  45. 45.
    Gee, A.H. Cipolla, R.: Tracking faces. In: Cipolla, R., Pentland, A. (eds.) Computer Vision for Human-Machine Interaction, pp. 113–122. Cambridge University Press, Cambridge (1998)Google Scholar
  46. 46.
    Gold, K., Scassellati, B.: A Bayesian Robot That Distinguishes “Self” from “Other”. Proceedings of the 29th Annual Meeting of the Cognitive Science Society (CogSci2007), Nashville, Tennessee, 2007. (Posted at: http://cs-www.cs.yale.edu/homes/gold-kevin/Gold-CogSci-07.pdf)
  47. 47.
    Groβ, R., Bonani, M., Mondada, F., Dorigo, M.: Autonomous self-assembly in a swarm-bot. In: Murase, K., Sekiyama, K., Kubota, N., Naniwa, T., Sitte, J. (eds.) Proceedings of the Third International Symposium on Autonomous Minirobots for Research and Edutainment (AMiRE’05), pp. 314–322. Springer, Berlin (2006a)Google Scholar
  48. 48.
    Groβ, R., Bonani, M., Mondada, F., Dorigo, M.: Autonomous self-assembly in swarm-bots. IEEE Trans. Robot. 22(5), 1115–1130 (2006b)CrossRefGoogle Scholar
  49. 49.
    Hamlin, G.J., Sanderson, A.C.: Tetrobot: A Modular Approach to Reconfigurable Parallel Robotics. Kluwer, Dordrecht (1998)Google Scholar
  50. 50.
    Hara, F., Kobayashi, H.: An animate face robot: its component technology development for interactive communication with human. In: Proceedings of Interface to Real & Virtual Worlds, May (1996a)Google Scholar
  51. 51.
    Hara, F., Kobayashi, H.: A face robot able to recognize and produce facial expression. In: Proceedings of International Conference on Intelligent Robots and Systems, pp. 1600–1607, November (1996b)Google Scholar
  52. 52.
    Hara, F., Kobayashi, H.: Real-time facial interaction between human and 3D face robot agent. In: Proceedings of IEEE International Workshop on Robot and Human Communication, November (1996c)Google Scholar
  53. 53.
    Harvey, I.: Evolving robot consciousness: the easy problems and the rest. In: Fetzer, J.H. (ed.) Evolving Consciousness (Advances in Consciousness Research Series), pp. 205–219. John Benjamins, Amsterdam (2002) (posted at: http://www.informatics.sussex.ac.uk/users/inmanh/oldindex.html)
  54. 54.
    Hauser, M.D., Santos, L.R.: The evolutionary ancestry of our knowledge of tools: from percepts to concepts. Ch. 15. In: Margolis, E., Laurence, S. (eds.) Creations of the Mind: Theories of Artifacts and Their Representation, pp. 267–288. Oxford: Oxford University Press (2007) (consolidated bibliography on pp. 312–345)Google Scholar
  55. 55.
    Higginson, J.: For folk’s sake, a robot that dances. Metro, p. 3. London, 9 August 2007Google Scholar
  56. 56.
    Hirata, Y., Hayashi, T., Takeda, T., Kosuge, K., Wang, Z.: Step estimation method for dance partner robot “MS DanceR” using neural network. In: Proceedings of the 2005 IEEE International Conference on Robotics and Biomimetics, pp. 523–528. IEEE, Piscataway (2005)CrossRefGoogle Scholar
  57. 57.
    Holland, O. (ed.): Machine Consciousness. Imprint Academic, Exeter (2003)Google Scholar
  58. 58.
    Holland, O., Goodman, R.: Robots with internal models: a route to machine consciousness? J. Conscious. Stud. 10(4), (2003) (Machine Consciousness, special issue)Google Scholar
  59. 59.
    Hoshino, J., Yamamoto, M., Saito, H.: A match moving technique for merging CG cloth and human movie sequences. J. Vis. Comput. Animat. 12(1), 23–29 (2001) (Magnenat Thalmann, N., Eberhardt, B. (eds.) 3D Modeling and Animation of Clothes, special issue)MATHCrossRefGoogle Scholar
  60. 60.
    Hosokawa, K., Tsujimori, T., Fujii, T., Kaetsu, H., Asama, H., Kuroda, Y., Endo, I.: Self-organizing collective robots with morphogenesis in vertical plane. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2858–2863. IEEE, Leuven (1998)Google Scholar
  61. 61.
    Jain, A.K., Bolleand, R., Pankanti, P.: Biometrics: Personal Identification in Networked Society. Kluwer, Dordrecht (1999)Google Scholar
  62. 62.
    Jain, A.K., Prabhakar, S., Hong, L., Pankanti, S.: Filterbank-based fingerprint matching. IEEE Trans. Image Process. 9, 846–859 (2000)CrossRefGoogle Scholar
  63. 63.
    Jørgensen, M.W., Østergaard, E.H., Lund, H.H.: Modular ATRON: modules for a self-reconfigurable robot. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, pp. 2068–2073. IEEE, Piscataway (2004)Google Scholar
  64. 64.
    Khoshnevis, B., Kovac, B., Shen, W.-M., Will, P.: Reconnectable joints for self-reconfigurable robots. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, Maui, Hawaii (2001)Google Scholar
  65. 65.
    Khoshnevis, B., Will, P., Shen, W.-M.: Highly compliant and self-tightening docking modules for precise and fast connection of self-reconfigurable robots. In: Proceeding of the IEEE International Conference on Robotics and Automation, pp. 2311–2316. IEEE, Taiwan (2003)Google Scholar
  66. 66.
    Khuwaja, G.A.: A multimodal biometric identification system using compressed finger images. Cybern. Syst. 37(1), 23–46 (2006)CrossRefGoogle Scholar
  67. 67.
    Kobayashi, H., Hara, F.: Facial interaction between animated 3D face robot and human beings. In: International Conference on Systems, Man and Cybernetics, Orlando, October 1997Google Scholar
  68. 68.
    Kosuge, K., Hayashi, T., Hirata, Y., Tobiyama, R.: Dance partner robot MS DancerR. In: Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3459–3464. IEEE, Piscataway (2003)Google Scholar
  69. 69.
    Kotay, K., Rus, D., Vona, M., McGray, C.: The self-reconfiguration robotic molecule. In: Proceedings of the IEEE International Conference on Robotics & Automation, pp. 424–431. Leuven, Belguim (1998)Google Scholar
  70. 70.
    Kotay, K., Rus, D.: Locomotion versatility through self-reconfiguration. Robot. Auton. Syst. 26, 217–232 (1999)CrossRefGoogle Scholar
  71. 71.
    Le, D.D., Boulic, R., Thalmann, D.: Integrating age attributes to virtual human locomotion. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXIV-5/W10. http://vrlab.epfl.ch/Publications (2003)
  72. 72.
    Lee, W.H., Sanderson, A.C.: Dynamic analysis and distributed control of the tetrobot modular reconfigurable robotic system. Auton. Robot 10(1), 67–82 (2001)MATHCrossRefGoogle Scholar
  73. 73.
    Ma, J., Nissan, E.: Identification and doing without it, V: a formal mathematical analysis for a case of mixup of individuals, and of recovery from failure to attain identification. Cybern. Syst. 34(6/7), 531–550 (2003)MATHGoogle Scholar
  74. 74.
    Magnenat-Thalmann, N., Gilles, B.: Towards an individualised physiological model of the musculoskeletal system. In: The digital patient, special issue of ERCIM News, pp. 25–26. 69 (April 2007). http://ercim-news.ercim.org/
  75. 75.
    Maiocchi, R.: 3-D Character animation using motion capture. Ch. 2. In: Magnenat Thalmann, N., Thalmann, D. (eds.) Interactive Computer Animation, pp. 10–39. Prentice Hall, London (1996)Google Scholar
  76. 76.
    McGray, C., Rus, D.: Self-reconfigurable molecule robots as 3D metamorphic robots. In: Proceedings of the 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1998, vol. 2, pp. 837–842, Victoria, BC, 13–17 October (1998)Google Scholar
  77. 77.
    Michel, P., Gold, K., Scassellati, B.: Motion-based robotic self-recognition. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS-04), Sendai, September 2004Google Scholar
  78. 78.
    Mitchell, R. W.: Kinesthetic-visual matching and the self-concept as explanations of mirror-self-recognition. J. Theory Soc. Behav. 27(1), 17–39 (1997)CrossRefGoogle Scholar
  79. 79.
    Mondada, F., Pettinaro, G.C., Guignard, A., Kwee, I.W., Floreano, D., Deneubourg, J.-L., Nolfi, S., Gambardella, L.M., Dorigo, M.: Swarm-Bot: a new distributed robotic concept. Auton. Robot 17(2/3), 193–221 (2004)CrossRefGoogle Scholar
  80. 80.
    Mondada, F., Gambardella, L.M., Floreano, D., Nolfi, S., Deneubourg, J.-L., Dorigo, M.: The cooperation of swarm-bots: physical interactions in collective robotics. IEEE Robot. Autom. Mag. 12(2), 21–28 (2005)CrossRefGoogle Scholar
  81. 81.
    Murata, S., Kurokawa, H., Kokaji, S.: Self-assembling machine. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 441–448. San Diego, California (1994)Google Scholar
  82. 82.
    Murata, S., Kurokawa, H., Tomita, K., Kokaji, S.: Self-assembling method for mechanical structure. Artif. Life Robot. 1, 111–115 (1997)CrossRefGoogle Scholar
  83. 83.
    Murata, S., Kurokawa, H., Yoshida, E., Tomita, K., Kokaji, S.: A 3-D self-reconfigurable structure. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 432–439. IEEE, Leuven (1998)Google Scholar
  84. 84.
    Murata, S., Yoshida, E., Kurokawa, H., Tomita, K., Kokaji, S.: Self-repairing mechanical systems. Auton. Robot 10(1), 7–21 (2001)MATHCrossRefGoogle Scholar
  85. 85.
    Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., Kokaji, S.: M-TRAN: self-reconfigurable modular robotic system. IEEE/ASME Trans. Mechatron. 7(4), 431–441 (2002)CrossRefGoogle Scholar
  86. 86.
    Nakaoka, S., Nakazawa, A., Kanehiro, F., Kaneko, K., Morisawa, M., Hirukawa, H., Ikeuchi, K.: Learning from observation paradigm: leg task models for enabling a biped humanoid robot to imitate human dances. Int. J. Robot. Res. 26, 829–844 (2007)CrossRefGoogle Scholar
  87. 87.
    Newsweek: Technology: Making Faces. Newsweek 127(13), 4. New York, European edition, 25 March (1996)Google Scholar
  88. 88.
    Nissan, E.: SEPPHORIS: an augmented hypergraph-grammar representation for events, stipulations, and legal prescriptions. Law, Comput. Artif. Intell. 4(1), 33–77 (1995)Google Scholar
  89. 89.
    Nissan, E.: A formalism for competing claims of identification: the “Smemorato di Collegno” amnesia case. Inf. Comput. 20(6), 625–656 (2001)MATHMathSciNetGoogle Scholar
  90. 90.
    Nissan, E.: A formalism for misapprehended identities: taking a leaf out of Pirandello. In: Stock, O., Strapparava, C., Nijholt, A. (eds.) Proceedings of the Twentieth Twente Workshop on Language Technology (TWLT20), pp. 113–123, Trento, Italy, University of Twente, Twente, 15–16 (April 2002)Google Scholar
  91. 91.
    Nissan, E.: Identification and doing without it, I: a situational classification of misapplied personal identity, with a formalism for a case of multiple usurped identity in Marivaux. Cybern. Syst. 34(4–5), 317–358 (2003a)MATHCrossRefGoogle Scholar
  92. 92.
    Nissan, E.: Identification and doing without it, II: visual evidence for pinpointing identity. How Alexander was found out: purposeful action, enlisting support, assumed identity, and recognition. A goal-driven formal analysis. Cybern. Syst. 34(4–5), 359–380 (2003b)MATHCrossRefGoogle Scholar
  93. 93.
    Nissan, E.: Identification and doing without it, III: authoritative opinions, purposeful action, relabelled goods, and forensic examinations. The case of the stuffed birds: its narrative dynamics set in formulae. Cybern. Syst. 34(6–7), 467–500 (2003c)MATHCrossRefGoogle Scholar
  94. 94.
    Nissan, E.: Identification and doing without it, IV: a formal mathematical analysis for the feveroles case, of mixup of kinds and ensuing litigation; and a formalism for the “Cardiff Giant” double hoax. Cybern. Syst. 34(6–7), 501–530 (2003d)MATHCrossRefGoogle Scholar
  95. 95.
    Nissan, E., Cassinis, R., Morelli, L.M.: Have computation, animatronics, and robotic art anything to say about emotion, compassion, and how to model them? Pragmatics & Cognition 16(1), 3–37 (2008). As a continuation of 15(3) (2007), Special issue on Mechanicism and Autonomy: What can robotics teach us about human cognition and action.CrossRefGoogle Scholar
  96. 96.
    Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines (Bradford Book). MIT Press, Cambridge, MA (2004)Google Scholar
  97. 97.
    O’Grady, R., Groβ, R., Dorigo, M.: Self-assembly on demand in a group of physical autonomous mobile robots navigating rough terrain. In: Capcarrere, M., Freitas, A., Bentley, P., Johnson, C., Timmis, J. (eds.) Proceedings of the Eighth European Conference on Artificial Life (ECAL05). (Lecture Notes in Artificial Intelligence [LNAI], 3630), pp. 272–281. Springer, Berlin (2005)Google Scholar
  98. 98.
    Pamecha, A., Chiang, C.-J., Stein, D., Chirikjian, G.: Design and implementation of metamorphic robots. In: Proceedings of the ASME Design Engineering Technical Conference and Computers in Engineering Conference, pp. 1–10. ASME, Irvine (1996)Google Scholar
  99. 99.
    Pennec, X.: From Riemannian geometry to computational anatomy of the brain. ERCIM News 69, 15–16 (April 2007) (The Digital Patient, special issue. Article downloadable from the webpage http://ercim-news.ercim.org/content/view/166/314/ of the European Research Consortium for Informatics and Mathematics)Google Scholar
  100. 100.
    Plotnik, J.M., de Waal, F.B.M., Reiss, D.: Self-recognition in an Asian elephant. Proc. Natl. Acad. Sci. U. S. A. 103(45), 17053–17057 (2006) [sic] (Posted on the Web at: http://www.emory.edu/LIVING_LINKS/pdf_attachments/PlotniketalPNAS.pdf)CrossRefGoogle Scholar
  101. 101.
    Povinelli, D.J., Eddy, T.J.: What Young Chimpanzees Know About Seeing. With commentary by R. Peter Hobson and by Michael Tomasello, and a reply by the authors. Monographs of the Society for Research in Child Development, 61. (Monographs of the Society for Research in Child Development, serial no. 247, vol. 61, no. 3.) University of Chicago Press, Chicago (1996)Google Scholar
  102. 102.
    Povinelli, D.: Folk Physics for Apes: The Chimpanzee’s Theory of How the World Works (title of 2003); Folk Physics for Apes: Chimpanzees, Tool-Use, and Causal Understanding (title of 2000). In collaboration with J.E. Reaux, L.A. Theall and S. Giambrone. Oxford: Oxford University Press, 2000; reprinted with corrections: 2003. Also, electronic reproduction, Boulder, Colorado: NetLibrary (2005)Google Scholar
  103. 103.
    Prevas, K., Unsal, C., Efe, M., Khosla, P.: A hierarchical motion planning strategy for a uniform self-reconfigurable module robotic system. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 787–792. IEEE, Piscataway (2002)Google Scholar
  104. 104.
    Rattani, A., Mehrotra, H., Gupta, P.: Multimodal biometric systems. In: Quigley, M. (ed.) Encyclopedia of Information Ethics and Security, pp. 478–485. IGI Global (formerly Idea Group), Hershey (2008) (but available from June 2007)Google Scholar
  105. 105.
    Reiss, D., Marino, L.: Mirror self-recognition in the bottlenose dolphin: a case of cognitive convergence. Proc. Natl. Acad. Sci. U. S. A. 98(10), 5937–5942 (2001)CrossRefGoogle Scholar
  106. 106.
    Ross, A., Jain, A.K.: Information fusion in biometrics. Pattern Recogn. Lett. 24(13), 2115–2125 (2003)CrossRefGoogle Scholar
  107. 107.
    Rubenstein, M., Payne, K., Will, P., Shen, W.-M.: Docking among independent and autonomous CONRO self-reconfigurable robots. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’04), , vol. 3, pp. 2877–2882. IEEE, Piscataway (2004)Google Scholar
  108. 108.
    Rus, D., Vona, M.: Physical implementation of the crystalline robot. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1726–1733. IEEE, San Francisco (2000)Google Scholar
  109. 109.
    Rus, D., Vona, M.: Crystalline robots: self-reconfiguration with compressible unit modules. Auton. Robot 10(1), 107–124 (2001)MATHCrossRefGoogle Scholar
  110. 110.
    Rus, D., Butler, Z., Kotay, K., Vona, M.: Self-reconfiguring robots. Commun. ACM 45(3), 39–45 (2002)CrossRefGoogle Scholar
  111. 111.
    Salemi, B., Shen, W.-M., Will, P.: Hormone-controlled metamorphic robots. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 4194–4199, Seoul, 21–26 May (2001)Google Scholar
  112. 112.
    Shen, W.-M.: Self-organization through digital hormones. (Inside Staab et al. (2003).) IEEE Intell. Syst. 18(4), 81–83 (1983)Google Scholar
  113. 113.
    Shen, W.-M., Will, P.: Docking in self-reconfigurable robots. In: Proceeding of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1049–1054. IEEE, Maui, Hawaii (2001)Google Scholar
  114. 114.
    Shen, W.-M., Will, P., Castano, A.: Robot modularity for self-reconfiguration. In: Proceedings of the International Society for Optical Engineers (SPIE) Conference on Sensor Fusion and Decentralized Control in Robotic Systems, pp. 236–245. SPIE, Boston (1999)Google Scholar
  115. 115.
    Shen, W.-M., Lu, Y., Will, P.: Hormone-based control for self-reconfigurable robots. In: Proceedings of the Fourth International Conference on Autonomous Agents, pp. 1–8, Barcelona, 3–7 June (2000a)Google Scholar
  116. 116.
    Shen, W.-M., Salemi, B., Will, P.: Hormones for self-reconfigurable robots. In: Proceedings of the Int. Conf. on Intelligent Autonomous Systems, pp. 918–925. Venice, 25–27 July (2000b)Google Scholar
  117. 117.
    Siegfried, T.: Robot Hormones Could Make Humans Jealous. Robotic Trends, Framingham, Mass., June 6, 2004 (Lexis Nexis and Tribune News Service; posted within the site http://www.roboticstrends.com/ at the webpage whose address is: displayarticle412.html?POSTNUKESID=e5ffad3fbee7b8e3f827792051c846e2)
  118. 118.
    Staab, S. (ed.), Heylighen, F., Gershenson, C., Flake, G.W., Pennock, D.M., Fain, D.C., De Roure, D., Aberer, K., Shen, W.-M., Dousse, O., Thiran, P.: Neurons, viscose fluids, freshwater polyp hydra- and self-organizing information systems. IEEE Intell. Syst. 18(4), 72–86 (2003)Google Scholar
  119. 119.
    Støy, K., Shen, W.M., Will, P.: How to make a self-reconfigurable robot run. In: International Conference on Autonomous Agents: Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 813–820, Bologna, Italy, ACM Press, New York, Part 2, 15–19 (July 2002a)Google Scholar
  120. 120.
    Støy, K., Shen, W.M., Will, P.: On the use of sensors in self-reconfigurable robots. In: Proceedings of the Seventh International Conference on Simulation of Adaptive Behavior: From Animals to Animats, pp. 48–57, Edinburgh, 5–9 August 2002 (2002b)Google Scholar
  121. 121.
    Suh, J., Homans, S., Yim, M.: Telecubes: mechanical design of a module for self-reconfigurable robotics. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 4095–4101. IEEE, Piscataway (2002)Google Scholar
  122. 122.
    Takeda, T., Kosuge, K., Hirata, Y.: HMM-based dance step estimation for dance partner robot MS DanceR. In: Proceedings of 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1602–1607. IEEE, Piscataway (2005)CrossRefGoogle Scholar
  123. 123.
    Takeda, T., Hirata, Y., Wang, S.D., Kosuge, K.: HMM-based error detection of dance step selection for dance partner robot MS DanceR. In: Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5631–5636. IEEE, Piscataway (2006)CrossRefGoogle Scholar
  124. 124.
    Takeda, T., Hirata, Y., Kosuge, K.: Dance step estimation method based on HMM for dance partner robot. IEEE Trans. Ind. Electron. 54(2), 699–706 (2007)CrossRefGoogle Scholar
  125. 125.
    Taubes, G.: An Interview with Dr. Michael I. Miller. In-Cytes, ISI. www.incites.com/scientists/DrMichaelIMiller.html (2002). Accessed 2007
  126. 126.
  127. 127.
    Tomita, K., Murata, S., Kurokawa, H., Toshida, E., Kokaji, S.: Self-assembly and self-repair method for a distributed mechanical system. IEEE Trans. Robot. Autom. 15(6), 1035–1045 (1999)CrossRefGoogle Scholar
  128. 128.
    Trianni, V., Tuci, E., Dorigo, M.: Evolving functional self-assembling in a swarm of autonomous robots. In: Schaal, S., Ijspeert, A., Billard, A., Vijayakamur. S., Hallam, J., Meyer, J.-A. (eds.) Proceedings of the Eight International Conference on Simulation of Adaptive Behavior (SAB’04), pp. 405–414. MIT, Cambrige, MA, (2004)Google Scholar
  129. 129.
    Trianni, V., Nolfi, S., Dorigo, M.: Cooperative hole avoidance in a swarm-bot. Robot. Auton. Syst. 54(2), 97–103 (2006)CrossRefGoogle Scholar
  130. 130.
    Tuci, E., Gross, R., Trianni, V., Mondada, F., Bonani, M., Dorigo, M.: Cooperation through self-assembly in multi-robot systems. ACM Trans. Auton. Adapt. Syst. 1(2), 115–150 (2006)CrossRefGoogle Scholar
  131. 131.
    Tyler, M.E., Haase, S.J., Kaczmarek, K.A., Bach-y-Rita, P.: Development of an electrotactile glove for display of graphics for the blind: preliminary results. In: Proceedings of the 2nd Joint Conference of the IEEE EMBS and Biomedical Engineering Society, pp. 2439–2440. IEEE, Piscataway (2002)Google Scholar
  132. 132.
    Unsal, C., Khosla, P.: A multi-layered planner for self-reconfiguration of a uniform group of I-cube modules. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 598–606. IEEE, Maui, Hawaii (2001)Google Scholar
  133. 133.
    Vassilvitskii, S., Yim, M., Suh, J.: A complete, local and parallel reconfiguration algorithm for cube style modular robots. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 117–122. IEEE, Piscataway (2002)Google Scholar
  134. 134.
    Walter, J., Welch, J., Amato, N.: Distributed reconfiguration of hexagonal metamorphic robots in two dimensions. In: McKee, G.T., Schenker, P.S. (eds.) Sensor Fusion and Decentralized Control in Robotic Systems III (Proceedings of SPIE, 4196), pp. 441–453. SPIE, Bellingham (2000)Google Scholar
  135. 135.
    Walter, J., Tsai, B., Amato, N.: Choosing good paths for fast distributed reconfiguration of hexagonal metamorphic robots. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 102–109. IEEE, Piscataway (2002)Google Scholar
  136. 136.
    Walter, J.E., Welch, J.L., Amato, N.M.: Distributed reconfiguration of metamorphic robot chains. Distrib. Comput. 17(2), 171–189 (2004)CrossRefGoogle Scholar
  137. 137.
    White, P.J., Kopanski, K., Lipson, H.: Stochastic self-reconfigurable cellular robotics. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’04), vol. 3, pp. 2888–2893. IEEE, Piscataway (2004)Google Scholar
  138. 138.
    White, P.J., Zykov, V., Bongard, J., Lipson, H.: Three dimensional stochastic reconfiguration of modular robots. In: Proceedings of the Robotics: Science and Systems Conference, pp. 161–168. MIT, Cambridge, MA (2005)Google Scholar
  139. 139.
    Yim, M.: A reconfigurable modular robot with many modes of locomotion. In: Proceedings of the International Conference on Advanced Mechatronics, pp. 283–288. Tokyo, 2–4 August 1993Google Scholar
  140. 140.
    Yim, M., Lamping, J., Mao, E., Chase, J.G.: Rhombic Dodecahedron Shape for Self-Assembling Robots. SPL Technical Report P9710777, Xerox PARC (1997)Google Scholar
  141. 141.
    Yim, M., Duff, D., Roufas, K.: Polybot: a modular reconfigurable robot. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 1, pp. 514–520. IEEE, San Francisco (2000)Google Scholar
  142. 142.
    Yim, M., Zhang, Y., Lamping, J., Mao, E.: Distributed control for 3D metamorphosis. Auton. Robot 10(1), 41–56 (2001)MATHCrossRefGoogle Scholar
  143. 143.
    Yim, M., Zhang, Y., Roufas, K., Duff, D., Eldershaw, C.: Connecting and disconnecting for chain self-reconfiguration with PolyBot. IEEE/ASME Trans. Mechatron. 7(4), 442–451 (2002a)CrossRefGoogle Scholar
  144. 144.
    Yim, M., Zhang, Y., Duff, D.: Robotics: modular robots. IEEE Spectr. 39(2), 30–34 (2002b)CrossRefGoogle Scholar
  145. 145.
    Yim, M., Roufas, K., Duff, D., Zhang, Y., Eldershaw, C., Homans, S.: Modular reconfigurable robots in space applications. Auton. Robot 14(2/3), 225–237 (2003)MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Computing, Goldsmiths’ CollegeUniversity of LondonLondonUK

Personalised recommendations