Advertisement

Journal of Intelligent and Robotic Systems

, Volume 51, Issue 3, pp 261–287 | Cite as

An Intelligent and Integrated Driver Assistance System for Increased Safety and Convenience Based on All-around Sensing

  • Sam-Yong Kim
  • Jeong-Kwan Kang
  • Se-Young Oh
  • Yeong-Woo Ryu
  • Kwangsoo Kim
  • Sang-Cheol Park
  • Jinwon Kim
Article

Abstract

Advanced driver assistance systems (ADAS) support the driver’s decision making to increase safety and comfort by providing an ergonomic display of the driving environment as well as issuing the warning signals or even exerting active control in case of dangerous conditions. Most previous research and products intend to offer only a single warning service, such as lane departure warning, collision warning, lane change assistance, etc. Although each component of these functions elevates the driving safety and convenience to a certain degree, a new type of ADAS will be developed to integrate all of the important functions with an efficient human–machine interface (HMI) framework for various driving conditions. We present an all-around sensing system based on an integrated ADAS that senses all directions using 2 cameras and 8 sonars, recognizes the driving environment via lane and vehicle detection, and construct a novel bird’s-eye view HMI of the environment for easy comprehension that even gives a proper warning signal in case of imminent danger. It was tested on our experimental vehicle with a good demonstration its working. Further, it has a good potential for commercial use by virtue of the low cost of the sensors used.

Keywords

Collision warning HMI Intelligent and integrated DAS Lane detection Vehicle detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stutts, J.C., Hunter, W.W.: Driver inattention, driver distraction and traffic crashes. ITE J 73, (7), 34–35 (2003)Google Scholar
  2. 2.
    A. Dugarry: Advanced driver assistance systems information management and presentation. Dissertation, Cranfield University (2004)Google Scholar
  3. 3.
    Jacobs, G., Hopstock, D., Wald L., Knoll, D.: Feasibility demonstration of a lateral position indication system based on magnetic pavement marking tape. In: Proc. Intelligent Transportation System Conf. (1996)Google Scholar
  4. 4.
    Chen, M., Jochem, T., Pomerleau, D.: AURORA: A vision-based roadway departure warning system. In: Proc. Int. Conf. on Intelligent Robots and Systems, pp. 243–248 (1995)Google Scholar
  5. 5.
    Pomerleau, D.A.: Ralph: Rapidly adaptive lateral position handler. In: Proc. Intelligent Vehicle Symp. (1995)Google Scholar
  6. 6.
    Dickmanns, E.D., Mysliwetz, B.D.: Recursive 3-D analysis and machine intelligence. IEEE Trans. Pattern Anal. Machine Intell. 14, (2), 199–213 (1992)CrossRefGoogle Scholar
  7. 7.
    LeBlanc, D.J., et al.: CAPC: a road-departure prevention system. IEEE Control Syst. Mag. 16, (6), 61–71 (1996)CrossRefGoogle Scholar
  8. 8.
    Jochem, T.M., Pomerleau, D.A., Thorpe, C.E.: MANIC: A nest generation neurally based autonomous road follower. In: Proc. 3rd Int. Conf. on Intelligent Autonomous Systems (1993)Google Scholar
  9. 9.
    Gonzalez, J.P., Ozguner, U.: Lane detection using histogram-based segmentation and decision trees. In: Proc. Intelligent Transportation System Conf. (2000)Google Scholar
  10. 10.
    Wang, Y., Teoh, E.K., Shen, D.: Lane detection using B-snake. In: Proc. IEEE Int. Conf. on Intelligence, Information, and Systems (1999)Google Scholar
  11. 11.
    Anotonio, G.: Parametric model of the perspective projection of a road with applications to lane keeping and 3d road reconstruction. Comput. Vis. and Image Underst. 73, (3), 414–427 (1999)CrossRefGoogle Scholar
  12. 12.
    Betozzi, M., Broggi, A.: GOLD: A parallel real-time stereo vision system for generic obstacle and lane detection. IEEE Trans. Image Process. 7, (1), 62–81 (1998)CrossRefGoogle Scholar
  13. 13.
    Kastrinaki, V., Zervakis, M., Kalaitzakis, K.: A survey of video processing techniques for traffic applications. Image Vision Comput. 21, (4), 359–381 (2003)CrossRefGoogle Scholar
  14. 14.
    Bertozzi, M., Broggi, A., Fascioli, A.: Vision-based intelligent vehicles: state of the art and perspective. Robot. Auton. Syst. 32, 1–6 (2000)CrossRefGoogle Scholar
  15. 15.
    Crisman, J., Thorpe, C.: Color vision for road following. In: Proc. SPIE Conf. on Mobile Robots, pp. 246–249 (1988)Google Scholar
  16. 16.
    Dickmanns, E., et al.: The seeing passenger car ‘Vamors-P’. In: Proc. Intelligent Vehicle Symp., pp. 24–26 (1994)Google Scholar
  17. 17.
    Bertozzi, M., Broggi, A., Castelluccio, S.: A real-time oriented system for vehicle detection. J. Syst. Architect. 43, (1–5), 317–325 (1997)CrossRefGoogle Scholar
  18. 18.
    Handmann, U., Kalinke, T., Tzomakas, C., Werner, M., Seelen, W.: An image processing system for driver assistance. Image Vision Comput. 18, (5), 367–376 (2000)CrossRefGoogle Scholar
  19. 19.
    Kalinke, T., Tzomakas, C., Seelen, W.V.: A texture-based object detection and an adaptive model-based classification. In: Proc. IEEE Int. Conf. on Intelligent Vehicles, pp. 143–148 (1998)Google Scholar
  20. 20.
    Cucchiara, R., Piccardi, M.: Vehicle detection under day and night illumination. In: Proc. Int. ICSC Symp. Intelligent Industrial Automation. (1999)Google Scholar
  21. 21.
    Franke, U., Kutzbach, I.: Fast stereo based object detection for stop and go traffic. In: Proc. Intelligent Vehicles Symp., pp. 339–344 (1996)Google Scholar
  22. 22.
    Bertozzi, M., Broggi, A.: Vision-based vehicle guidance. Computer, 30, (7), 49–55 (1997)CrossRefGoogle Scholar
  23. 23.
    Giachetti, A., Campani, M., Torre, V.: The use of optical flow for road navigation. IEEE Trans. Robotics and Automation. 14, (1), 34–48 (1998)CrossRefGoogle Scholar
  24. 24.
    Zhu, Y., Comanicciu, D., Ramesh, V., et al.: An integrated framework of vision-based vehicle detection with knowledge fusion. In: Proc. Intelligent Vehicle Symp., pp. 199–204 (2005)Google Scholar
  25. 25.
    Torralba, A.: Contextual priming for object detection. Int. J. of Comput. Vision. 53, (2), 169–191 (2003)CrossRefGoogle Scholar
  26. 26.
    Matthews, N., An, P., Charnley, D., Harris, C.: Vehicle detection and recognition in greyscale imagery. Control Eng. Practices. 4, 473–479 (1996)CrossRefGoogle Scholar
  27. 27.
    Goerick, C., Detlev, N., Werner, M.: Artificial neural networks in real-time car detection and tracking applications. Pattern Recogn. Lett. 17, 335–342 (1996)CrossRefGoogle Scholar
  28. 28.
    Papageorgiou, C., Poggio, T.: Trainable system for object detection. Int. J. Comput. Vision. 38, (1), 15–33 (2000)MATHCrossRefGoogle Scholar
  29. 29.
    Sun, Z., Bebis, G., Miller, R.: On-road vehicle detection using gabor filters and support vector machines. In: Proc. IEEE Int. Conf. on Digital Signal Processing, pp. 1019–1022 (2002)Google Scholar
  30. 30.
    Lowe, D.: Object recognition from local scale-invariant features. In: Proc. Int. Conf. on Computer Vision, vol. 2, pp. 1150–1157 (1999)Google Scholar
  31. 31.
    Schneiderman, H., Kanade, T.: A statistical method for 3D object detection applied to faces and cars. In: Proc. Int. Conf. on Computer Vision and Pattern Recognition, pp. 746–751 (2000)Google Scholar
  32. 32.
    Ayoub, K., Fawzi, N., Yotam, A., Claude, L.: Vehicle detection combining gradient analysis and adaboost classification. In: Proc. Intelligent Transportation System Conf. (2005)Google Scholar
  33. 33.
    Krips, M., Velten, J., Kummert, A., Teuner, A.: AdTM tracking for blind spot collision avoidance. In Proc. Intelligent Vehicle Symp., pp. 544–548 (2004)Google Scholar
  34. 34.
    Teshima, T., Saito, H., Ozawa, S., Yamamoto, K., Ihara, T.: Estimation of FOE without optical flow for vehicle lateral position detection. MVA2005 IAPR Conf. on Machine Vision Applications, pp. 406–409 (2005)Google Scholar
  35. 35.
    Xue, L., Rongchun, Z., Qing, W.: FPGA based Sobel algorithm as vehicle edge detector in VCAS. In: Proc. the 2003 Int. Conf. on Neural Networks and Signal Processing, vol. 2, pp. 1139–1142 (2003)Google Scholar
  36. 36.
    Morizane, H., Takenaga, H., Kobayashi, Y., Nakamura, K.: Cut-in vehicle recognition system. In: Proc. Intelligent Transportation System Conf., pp. 976–980 (1999)Google Scholar
  37. 37.
    Lai, C.C., Tsai, W.H.: Location estimation and trajectory prediction of moving lateral vehicle using two wheel shapes information in 2-D lateral vehicle images by 3-D computer vision techniques. In: Proc. Int. Conf. on Robotics and Automation, pp. 881–886 (2003)Google Scholar
  38. 38.
    Achler, O., Trivedi, M.M.: Vehicle wheel detector using 2D filter banks. In: Proc. Intelligent Vehicle Symp., pp. 25–30 (2004)Google Scholar
  39. 39.
    Achler, O., Trivedi, M.M.: Camera based vehicle detection, tracking, and wheel baseline estimation approach. In: Proc. Intelligent Transportation Systems Conf., pp. 743–748 (2004)Google Scholar
  40. 40.
    Langer, D., Jochem, T.: Fusing radar and vision for detecting, classifying and avoiding roadway obstacles. In: Proc. Intelligent Vehicle Symp., pp. 333–338 (1996)Google Scholar
  41. 41.
    Tokoro, S.: Automotive application systems of a millimeter-wave radar. In: Proc. Intelligent Vehicle Symp., pp. 260–265 (1996)Google Scholar
  42. 42.
    Woll, J.D.: VORAD collision warning radar. In: Proc. IEEE Int. Radar Conf., pp. 369–372 (1995)Google Scholar
  43. 43.
    Parkes, A.M., Franzen, S.: Driving future vehicles 1993. CRC, Boca Raton (1993)Google Scholar
  44. 44.
    Dagan, E., Mano, O., Stein, G.P., Shashua, A.: Forward collision warning with a single camera. In: Proc. Intelligent Vehicles Symp., pp. 37–42 (2004)Google Scholar
  45. 45.
    ITS World Congress: http://www.itsworldcongress.com
  46. 46.
    Toyota, K., Fuji, T., Kimoto, T., Tanimoto, M.: A proposal of HIR (Human-Oriented Image Restructuring) Systems for ITS. In: Proc. Intelligent Vehicle Symp., pp. 540–544 (2000)Google Scholar
  47. 47.
    Ichihara, E., Ohta, Y.: NaviView: visual assistance using roadside cameras – evaluation of virtual views. In: Proc. Intelligent Transportation System Conf., pp. 322–327 (2000)Google Scholar
  48. 48.
    Brauckmann, M.E., Goerick, C., Groß, J., Zielke, T.: Towards all around automatic visual obstacles sensing for cars. In: Proc. Intelligent Vehicle Symp., pp. 79–84 (1994)Google Scholar
  49. 49.
  50. 50.
    Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Tech. report CMU-RI-TR-92–01, Robotics Institute, CMU (1992)Google Scholar
  51. 51.
    Kim, S.Y., et al.: Front and rear vehicle detection and tracking in the day and night times using vision and sonar sensor fusion. In: Proc. Int. Conf. on Intelligent Robots and Systems, pp. 2306–2311 (2005)Google Scholar
  52. 52.
    Baker, S., Gross, R., Matthews, I., Ishikawa, T.: Lucas–Kanade 20 years on: a unifying framework: Part 2. Tech. Report CMU-RI-TR-03–01 (2003)Google Scholar
  53. 53.
    Bishop, R.: Intelligent vehicle technology and trends. Artech House, Norwood (2005)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Sam-Yong Kim
    • 1
  • Jeong-Kwan Kang
    • 1
  • Se-Young Oh
    • 1
  • Yeong-Woo Ryu
    • 1
  • Kwangsoo Kim
    • 2
  • Sang-Cheol Park
    • 2
  • Jinwon Kim
    • 2
  1. 1.Department of Electrical EngineeringPohang University of Science and TechnologyPohangKorea
  2. 2.Telecommunication R&D CenterSamsung Electronics Co.Suwon-cityKorea

Personalised recommendations