Advertisement

Journal of Intelligent and Robotic Systems

, Volume 48, Issue 4, pp 525–537 | Cite as

On Constrained Nonlinear Tracking Control of a Small Fixed-wing UAV

Unmanned Systems Paper

Abstract

The problem of constrained nonlinear tracking control for a small fixed-wing unmanned air vehicles (UAV) is considered. With the UAV equipped with low-level autopilots, the twelve-state model of the UAV is reduced to a six-state model with heading, air speed, and altitude command inputs. Three different approaches based on the state dependent Riccati equation (SDRE), Sontag’s formula, and aggressive selection from a satisficing control set are proposed to design the heading and air speed control commands. Those approaches are compared with each other graphically to show their strength and weakness under different scenarios. High-fidelity simulation results on a six-degree-of-freedom twelve-state fixed-wing UAV model are presented to demonstrate the performance of the three approaches.

Key words

control Lyapunov function SDRE trajectory tracking unmanned air vehicle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Faiz, N., Agrawal, S.K., Murray, R.M.: Trajectory planning of differentially flat systems with dynamics and inequalities. AIAA J. Guid. Control Dyn. 24(2), 219–227 (2001)Google Scholar
  2. 2.
    Frazzoli, E., Dahleh, M.A., Feron, E.: Real-time motion planning for agile autonomous vehicles. AIAA J. Guid. Control Dyn. 25(1), 116–129 (2002)Google Scholar
  3. 3.
    Yakimenko, O.A.: Direct method for rapid prototyping of near-optimal aircraft trajectories. AIAA J. Guid. Control Dyn. 23(5), 865–875 (2000)CrossRefGoogle Scholar
  4. 4.
    Anderson, E.P., Beard, R.W., McLain, T.W.: Real time dynamic trajectory smoothing for uninhabited aerial vehicles. IEEE Trans. Control Syst. Technol. 13(3), 471–477 (2005)CrossRefGoogle Scholar
  5. 5.
    Giulietti, F., Pollini, L., Innocenti, M.: Autonomous formation flight. IEEE Control Syst. Mag. 20(6), 34–44 (2000)CrossRefGoogle Scholar
  6. 6.
    Beard, R.W., McLain, T.W., Goodrich, M., Anderson, E.P.: Coordinated target assignment and intercept for unmanned air vehicles. IEEE Trans. Robot. Autom. 18(6), 911–922 (2002)CrossRefGoogle Scholar
  7. 7.
    McLain, T.W., Beard, R.W.: Coordination variables, coordination functions, and cooperative timing missions. AIAA J. Guid. Control Dyn. 28(1), 150–161 (2005)Google Scholar
  8. 8.
    Proud, A.W., Pachter, M., D’Azzo, J.J.: Close formation flight control. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference, Portland, OR, pp 1231–1246, Paper No.AIAA-99-4207 (1999)Google Scholar
  9. 9.
    Brockett, R.W.: Asymptotic stability and feedback stabilization. In: Millman, R.S., Sussmann, H.J. (eds.) Differential Geometric Control Theory, pp. 181–191. Birkhaüser, Cambridege, MA (1983)Google Scholar
  10. 10.
    Bloch, A.M., McClamroch, N.H., Reyhanoglu, M.: Controllability and stabilizability properties of a nonholonomic control system. In: Proceedings of the 29th Conference on Decision and Control, Honolulu, HI, pp. 1312–1314 (1990)Google Scholar
  11. 11.
    Divelbiss, A.W., Wen, J.T.: Trajectory tracking control of a car-trailer system. IEEE Trans. Control Syst. Technol. 5(3), 269–278 (1997)CrossRefGoogle Scholar
  12. 12.
    Yang, J.M., Kim, J.H.: Sliding mode motion control of nonholonomic mobile robots. Control Syst. Mag. 19(2), 15–23 (1999)CrossRefGoogle Scholar
  13. 13.
    Fierro, R., Lewis, F.L.: Control of a nonholonomic mobile robot: backstepping kinematics into dynamics. In: Proceedings of the 34th Conference on Decision and Control, New Orleans, LA, pp. 3805–3810 (1995)Google Scholar
  14. 14.
    Jiang, Z.P., Nijmeijer, H.: Tracking control of mobile robots: a case study in backstepping. Automatica 33, 1393–1399 (1997)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Fukao, T., Nakagawa, H., Adachi, N.: Adaptive tracking control of a nonholonomic mobile robot. IEEE Trans. Robot. Autom. 16(5), 609–615 (2000)CrossRefGoogle Scholar
  16. 16.
    Lee, T.C., Song, K.T., Lee, C.H., Teng, C.C.: Tracking control of unicycle-modeled mobile robots using a saturation feedback controller. IEEE Trans. Control Syst. Technol. 9(2), 305–318 (2001)CrossRefGoogle Scholar
  17. 17.
    Jiang, Z.P., Lefeber, E., Nijmeijer, H.: Saturated stabilization and track control of a nonholonomic mobile robot. Syst. Control Lett. 42, 327–332 (2001)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Cloutier, J.R.: State-dependent Riccati equation techniques: an overview. In: Proceedings of the American Control Conference, pp. 932–936 (1997)Google Scholar
  19. 19.
    Sontag, E.D.: A ‘universal’ construction of Artstein’s theorem on nonlinear stabilization. Syst. Control Lett. 13, 117–123 (1989)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Krstić, M., Deng, H.: Stabilization of Nonlinear Uncertain Systems. Communication and Control Engineering. Springer, Berlin Heidelberg New York (1998)Google Scholar
  21. 21.
    Kingston, D., Beard, R., McLain, T., Larsen, M., Ren, W.: Autonomous vehicle technologies for small fixed wing UAVs. In: AIAA 2nd Unmanned Unlimited Systems, Technologies, and Operations–Aerospace, Land, and Sea Conference and Workshop & Exhibit, San Diego, CA, paper no. AIAA-2003-6559 (2003)Google Scholar
  22. 22.
    Ren, W., Beard, R.W.: Trajectory tracking for unmanned air vehicles with velocity and heading rate constraints. IEEE Trans. Control Syst. Technol. 12(5), 706–716 (2004)CrossRefGoogle Scholar
  23. 23.
    Curtis, J.W., Beard, R.W.: Satisficing: A new approach to constructive nonlinear control. IEEE Trans. Autom. Control 49(7), 1090–1102 (2004)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUtah State UniversityLoganUSA

Personalised recommendations