Advertisement

Journal of Intelligent and Robotic Systems

, Volume 48, Issue 1, pp 37–54 | Cite as

Improving Robustness of Mobile Robots Using Model-based Reasoning

  • Michael Hofbaur
  • Johannes Köb
  • Gerald Steinbauer
  • Franz Wotawa
Article

Abstract

Retaining functionality of a mobile robot in the presence of faults is of particular interest in autonomous robotics. From our experiences in robotics we know that hardware is one of the weak points in mobile robots. In this paper we present the foundations of a system that automatically monitors the driving device of a mobile robot. In case of a detected fault, e.g., a broken motor, the system automatically reconfigures the robot in order to still allow to reach a certain position. The described system is based on a generalized model of the motion hardware. High-level control like path-planner only to change its behavior in case of a serious damage. The high-level control system remains the same. In the paper we present the model and the foundations of the diagnosis and reconfiguration system.

Key words

autonomous mobile robot model-based diagnosis motion reconfiguration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carlson, J., Murphy, R.R.: How UGVs physically fail in the field. IEEE Transactions on Robotics 21(3), 423–437 (2005)CrossRefGoogle Scholar
  2. 2.
    Steinbauer, G., Brandstötter, M., Buchleitner, M., Galler, S., Jantscher, S., Krammer, G., Mörth, M., Weber, J., Weiglhofer, M.: Mostly harmless team description 2006 – robust control of mobile robots. In: Proceedings of the International RoboCup Symposium, Bremen, Germany (2006)Google Scholar
  3. 3.
    Murphy, R.R.: Introduction to AI Robotics. MIT Press, Cambridge, MA (2002)Google Scholar
  4. 4.
    Siegwart, R., Nourbakhsh, I.R.: Introduction to Autonomous Mobile Robots. MIT Press, Cambridge, MA (2004)Google Scholar
  5. 5.
    Hofbaur, M.W., Williams, B.C.: Mode estimation of probabilistic hybrid systems. In: Tomlin, C.J., Greenstreet, M.R. (eds.) Hybrid Systems: Computation and Control, HSCC, volume 2289 of Lecture Notes in Computer Science, pp. 253–266. Springer, Berlin Heidelberg New York (2002)Google Scholar
  6. 6.
    Hofbaur, M.W.: Hybrid estimation of complex systems. In: Lecture Notes in Control and Information Sciences, vol. 319. Springer, Berlin Heidelberg New York (2005)Google Scholar
  7. 7.
    Latombe, J.-C.: Robot Motion Planning, 8th edn. Kluwer, Boston, MA (2004)Google Scholar
  8. 8.
    Choset, H., Lynch, K.M., Hutchison, S., Kantor, G., Burgard, W., Kavarki, L., Thrun, S.: Principles of Robot Motion. Theory, Algorithms and Implementations. MIT Press, Cambridge, MA (2004)Google Scholar
  9. 9.
    Hamscher, W., Console, L., de Kleer, J. (eds.): Readings in Model-based Diagnosis. Morgan Kaufmann, San Mateo, CA (1992)Google Scholar
  10. 10.
    Weld, D., de Kleer, J. (eds.): Qualitative Reasoning About Physical Systems. Morgan Kaufmann, San Mateo, CA (1990)Google Scholar
  11. 11.
    Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    de Kleer, J., Williams, B.C.: Diagnosing multiple faults. Artif. Intell. 32(1), 97–130 (1987)MATHCrossRefGoogle Scholar
  13. 13.
    Kalman, R.: A new approach to linear filtering and prediction problems. ASME Transactions, J. Basic Eng. 82, 35–50 (1960)Google Scholar
  14. 14.
    Anderson, B., Moore, J.: Optimal Filtering. Information and System Sciences Series. Prentice Hall, Upper Saddle River, NJ (1979)Google Scholar
  15. 15.
    Isermann, R.: Supervision, fault-detection and fault-diagnosis methods – An introduction. Control Eng. Pract. 5(5), 639–652 (1997)CrossRefGoogle Scholar
  16. 16.
    Chen, J., Patton, R.: Robust Model-based Fault Diagnosis for Dynamic Systems. Kluwer, Boston, MA (1999)MATHGoogle Scholar
  17. 17.
    Hofbaur, M.W., Wotawa, F.: A causal analysis method for concurrent hybrid automata. In: Proceedings of the 21st National Conference on Artificial Intelligence (AAAI-06), pp. 840–846 (2006)Google Scholar
  18. 18.
    Köb, J.: Modellbasierte Regelung eines Roboterfahrwerkes. Master’s thesis, Institute for Automation and Control, Graz University of Technology (2005)Google Scholar
  19. 19.
    Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Man Cybern. 4(2), 100–107 (1968)CrossRefGoogle Scholar
  20. 20.
    Williams, B.C., Nayak, P.: A model-based approach to reactive self-configuring systems. In: Proceedings of the 13th National Conference on Artificial Intelligence (AAAI-96), pp. 971–978. American Association for Artificial Intelligence, Menlo Park, CA (1996)Google Scholar
  21. 21.
    Williams, B.C. et al.: Remote agent: To boldly go where no AI system has gone before. Artif. Intell. 103(1-2), 5–48 (1998)MATHCrossRefGoogle Scholar
  22. 22.
    Friedrich, G., Stumptner, M., Wotawa, F.: Model-based diagnosis of hardware designs. Artif. Intell. 111(2), 3–39 (1999)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Peischl, B., Wotawa, F.: Automated source-level error localization in hardware designs. IEEE Des. Test Comput. 23(1), 8–19 (2006)CrossRefGoogle Scholar
  24. 24.
    Gelb, A.: Applied Optimal Estimation. MIT Press, Cambridge, MA, (1974), 15th printing, 1999 edn.Google Scholar
  25. 25.
    Ackerson, G.A., Fu, K.S.: On state estimation in switching environments. IEEE Trans. Automat. Contr. 15, 10–17 (1970)CrossRefGoogle Scholar
  26. 26.
    Blom, H.A.P., Bar-Shalom, Y.: The interacting multiple model algorithm for systems with Markovian switching coefficients. IEEE Trans. Automat. Contr. 33, 780–783 (1988)MATHCrossRefGoogle Scholar
  27. 27.
    Hanlon, P., Maybeck, P.: Multiple-model adaptive estimation using a residual correlation Kalman filter bank. IEEE Trans. Aerosp. Electron. Syst. 36(2), 393–406 (2000)CrossRefGoogle Scholar
  28. 28.
    Narasimhan, S., Biswas, G.: An approach to model-based diagnosis of hybrid systems. In: Tomlin, C.J., Greenstreet, M.R. (eds.) Hybrid Systems: Computation and Control, HSCC volume 2289 of Lecture Notes in Computer Science, pp. 308–322. Springer, Berlin Heidelberg New York (2002)Google Scholar
  29. 29.
    Zhao, F., Koutsoukos, X., Haussecker, H., Reich, J., Cheung, P.: Distributed monitoring of hybrid systems: a model-directed approach. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI’01), pp. 557–564 (2001)Google Scholar
  30. 30.
    Benazera, E., Travé-Massuyès, L., Dague, P.: State tracking of uncertain hybrid concurrent systems. In: Proceedings of the 13th International Workshop on Principles of Diagnosis (DX02), pp. 106–114, May 2002Google Scholar
  31. 31.
    Lerner, U., Parr, R., Koller, D., Biswas, G.: Bayesian fault detection and diagnosis in dynamic systems. In: Proceedings of the 7th National Conference on Artificial Intelligence (AAAI’00) (2000)Google Scholar
  32. 32.
    Dearden, R., Clancy, D.: Particle filters for real-time fault detection in planetary rovers. In: Proceedings of the Thirteenth International Workshop on Principles of Diagnosis, pp. 1–6 (2002)Google Scholar
  33. 33.
    Verma, V., Gordon, G., Simmons, R., Thrun, S.: Real-time fault diagnosis. IEEE Robot. Autom. Mag. 11(2), 56–66 (2004)CrossRefGoogle Scholar
  34. 34.
    Murphy, R.R., Hershberger, D.: Classifying and recovering from sensing failures in autonomous mobile robots. In: AAAI/IAAI, vol. 2, pp. 922–929. (1996)Google Scholar
  35. 35.
    Roumeliotis, S.I., Sukhatme, G.S., Bekey, G.A.: Sensor fault detection and identification in a mobile robot. In: IEEE Conf on Intelligent Robots and Systems, pp. 1383–1388, Victoria, Canada (1998)Google Scholar
  36. 36.
    Steinbauer, G., Wotawa, F.: Detecting and locating faults in the control software of autonomous mobile robots. In: 19th International Joint Conference on Artificial Intelligence (IJCAI-05), Edinburgh, UK (2005)Google Scholar
  37. 37.
    Steinbauer, G., Mörth, M., Wotawa, F.: Real-time diagnosis and repair of faults of robot control software. In: Proceedings of the RoboCup International Symposium, Osaka, Japan (2005)Google Scholar
  38. 38.
    Stumptner, M., Wotawa, F.: Model-based reconfiguration. In: Proceedings Artificial Intelligence in Design, Lisbon, Portugal (1998)Google Scholar
  39. 39.
    Grosclaude, I.: Model-based monitoring of component-based software systems. In: 15th International Workshop on Priciples of Diagnosis, pp. 155–160, Carcassonne, France (2004)Google Scholar
  40. 40.
    Liu, H., Coghill, G.M.: Qualitative modeling of kinematic robots. In: 18th International Workshop on Qualitative Reasoning, Illinois, USA (2004)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Michael Hofbaur
    • 1
  • Johannes Köb
    • 1
  • Gerald Steinbauer
    • 2
  • Franz Wotawa
    • 2
  1. 1.Institute for Automation and ControlGraz University of TechnologyGrazAustria
  2. 2.Institute for Software TechnologyGraz University of TechnologyGrazAustria

Personalised recommendations