Journal of Intelligent and Robotic Systems

, Volume 48, Issue 2, pp 285–304 | Cite as

Vision Based Target Tracking and Collision Avoidance for Mobile Robots

Unmanned Systems Paper


A real-time object tracking and collision avoidance method is presented for mobile robot navigation in indoors environments using stereo vision and a laser sensor. Stereo vision is used to identify the target and to calculate its relative distance from the mobile robot while laser based range measurements are utilized to avoid collision with surrounding objects. The target is tracked by its predetermined or dynamically defined color. The mobile robot’s velocity is dynamically adjusted according to its distance from the target. Experimental results in indoor environments demonstrate the effectiveness of the method.

Key words

mobile robot navigation moving target tracking vision based navigation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ding, J., Kondou, H., Kimura, H., Hada, Y., Takase, K.: Robust tracking for camera control on an irregular terrain vehicle. In: Proceedings of the 41st SICE Annual Conference, vol. 2, pp. 1191–1196 (2002)Google Scholar
  2. 2.
    Wang, H.Y., Itani, S., Fukao, T., Adachi, N.: Image-based visual adaptive tracking control of nonholonomic mobile robots. In: Proc. of IEEE ICIRS, Hawaii, November (2001)Google Scholar
  3. 3.
    Meier, E.B., Ade, F.: Using the condensation algorithm to implement tracking for mobile robots. In: Third European Workshop on Advanced Mobile Robots, pp. 73–80 (1999)Google Scholar
  4. 4.
    Gross, H.M., Boehme, H.J., Wilhelm, T.: A contribution to vision based localization, tracking and navigation methods for an interactive mobile service robot. In: 2001 IEEE Intern. Conference on Systems, Man and Cybernetics, pp. 672–677 (2001)Google Scholar
  5. 5.
    Miyata, J., Murakami, T., Ohnishi, K.: An approach to tracking motion of mobile robot for moving object. In: 26th Annual Confjerence of the IEEE Industrial Electronics Society, vol. 4, pp. 2249–2254 (2000)Google Scholar
  6. 6.
    Kleinehagenbrock, M., Lang, S., Fritsch, J., Lomker, F., Fink, G.A., Sagerer, G.: Person tracking with a mobile robot based on multi-modal anchoring. In: Proceedings of 11th IEEE International Workshop on Robot and Human Interactive Communication, pp. 423–429 (2002)Google Scholar
  7. 7.
    Saeedi, P., Lawrence, P., Lowe, D.: 3D motion tracking of a mobile robot in a natural environment. In: Proc. of IEEE International Conference on Robotics and Automation, vol. 2, pp. 1682–1687 (2000)Google Scholar
  8. 8.
    Lee, S.O., Cho, Y.J., Bo, M.H., You, B.J., Oh, S.R.: A stable target tracking control for unicycle mobile robots. In: Proceedings of International Conference on Intelligent Robots and Systems, vol. 3, pp. 1822–1827 (2000)Google Scholar
  9. 9.
    Lin, F.C., Tong, W., Li, T.H.S.: An experimental study on tracking control of two autonomous mobile robots. In: 23rd International Conference on Industrial Electronics, Control and Instrumentation, vol.3, pp. 1311–1316 (1997)Google Scholar
  10. 10.
    Tong, W., Li, T.H.S.: Realization of two-dimensional target tracking problem via autonomous mobile robots using fuzzy sliding mode control. In: Industrial Electronics Society, vol. 2, pp. 1158–1163 (1998)Google Scholar
  11. 11.
    Lin, Z., Zeman, V., Patel, R.V.: On line robot trajectory planning for catching a moving object. IEEE Int. Conf. Robot. Autom. 3, 1726–1731 (1989)Google Scholar
  12. 12.
    Darrell, T., Gordon, G., Harville, M., Woodfill, J.: Integrated person tracking using stereo, color and pattern detection. In: Proccedings of Computer Vision and Pattern Recognition, pp. 601–608 (1998)Google Scholar
  13. 13.
    Li, T.H.S., Chang, S.J., Tong, W.: Fuzzy target tracking control of autonomous mobile robots by using infrared sensors. IEEE Trans. Fuzzy Syst. 12(4), 491–501 (2004)CrossRefGoogle Scholar
  14. 14.
    Luo, R.C., Chean, T.M.: Autonomous mobile target tracking system based on gray-fuzzy control algorithm. IEEE Trans. Ind. Electron. 47(4), 920–931 (2000)CrossRefGoogle Scholar
  15. 15.
    Balkenius, C., Kopp, L.: Visual tracking and target selection for mobile robots. In: Proceedings of the First Euromicro Workshop on Advanced Mobile Robot, pp. 166–171 (1996)Google Scholar
  16. 16.
    Rowley, H., Baluja, S., Kanade, T.: Neural network based face detection. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 690–696. IEEE Computer Society (1997)Google Scholar
  17. 17.
    Montecillo-Puente, F.J., Ayala-Ramirez, V., Perez-Garcia, A., Sanchez-Yanez, R.E.: Fuzzy color tracking for robotic tasks. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 3, pp. 2769–2773 (2003)Google Scholar
  18. 18.
    Jain, R., Kasturi, R., Schunck, B.G.: Machine Vision. McGraw-Hill, New York (1995)Google Scholar
  19. 19.
    Russ, J.C.: The Image Processing Handbook. IEEE, Piscataway, NJ (1995)Google Scholar
  20. 20.
    Buluswar, S., Draper, B.: Color machine vision for autonomous vehicles. Eng. Appl. Artif. Intell. 11, 245–256 (1998)CrossRefGoogle Scholar
  21. 21.
    Lee, Y.B., You, B.J., Lee, S.W.: A real time color based object tracking robust to irregular illumination variations. In: Proc. Of IEEE International Conference on Robotics and Automation, pp. 1659–1664 (2001)Google Scholar
  22. 22.
    Swain, M., Ballard, D.: Indexing via color histograms. In: Proc. Of the Third International Conf. on Computer Vision, pp. 390–393 (1990)Google Scholar
  23. 23.
    Chen, H.C., Chien, W.J., Wang, S.J.: Contrast based color segmentation with adaptive thresholds. In: International Conf. on Image Processing vol. 2, pp. II-73–II-76 (2002)Google Scholar
  24. 24.
    Chao, Y., Changan, Z.: Obstacle detection using adaptive color segmentation and planar projection stereopsis for mobile robots. In: Proc. Of IEEE International Conf. on Robotics, Intelligent Systems and Signal Processing, pp. 1097–1101 (2003)Google Scholar
  25. 25.
    Frunt, B.V., Finlayson, G.D.: Color constant color indexing. IEEE Trans. Pattern Anal. Mach. Intell. 17(5), 522–529 (1995)CrossRefGoogle Scholar
  26. 26.
    Wu, Ying, Huang, T.S.: Nonstationary color tracking for vision-based human-computer interaction. IEEE Trans. Neural Netw. 13(4), 948–960 (2002)CrossRefGoogle Scholar
  27. 27.
    Orwell, J.: Remagnino P., Jones G.A., Multi-camera colour tracking. In: Second IEEE Workshop on Visual Surveillance, pp.14–21 (1999)Google Scholar
  28. 28.
    Sobottka, K., Pitas, I.: Segmentation and tracking of faces in color images. In: Proc. of Automatic Face and Gesture Recognition, pp. 236–241 (1996)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Department of Industrial and Management Systems EngineeringUniversity of South FloridaTampaUSA
  2. 2.Unmanned Vehicle Systems Lab, Department of Computer Science and EngineeringUniversity of FloridaTampaUSA

Personalised recommendations