Journal of Intelligent and Robotic Systems

, Volume 47, Issue 4, pp 341–360 | Cite as

Guidance-Based On-Line Robot Motion Planning for the Interception of Mobile Targets in Dynamic Environments

  • F. Kunwar
  • F. Wong
  • R. Ben Mrad
  • B. Benhabib


This paper presents a novel method for the interception of moving targets in the presence of obstacles. The proposed method provides simultaneous positional interception and velocity matching of the target moving in a dynamic environment with static and/or mobile obstacles. An acceleration command for the autonomous robot (i.e., interceptor) is first obtained from a rendezvous-guidance technique that takes into account the kinematic and dynamic limitations of the interceptor, but not the motion of the obstacles. This command is subsequently augmented, though only when necessary, in order to avoid those obstacles that are about to interfere with the time-optimal motion of the interceptor. The augmenter acceleration command is obtained in our work through a modified cell-decomposition method. Extensive simulation and experimental results have clearly demonstrated the efficiency of the proposed interception method, tangibly better than other existing obstacle-avoidance methods.

Key words

moving-object interception navigation-guidance obstacle-avoidance online trajectory planning rendezvous-guidance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yilmaz, A., Sami, O., Davis, R.P.: Flexible manufacturing systems: characteristics and assessment. Eng. Manage. Int. 4(3), 209–212 (1987)CrossRefGoogle Scholar
  2. 2.
    Shneydor, N.A.: Parallel navigation. In: Missile Guidance and Pursuit, pp. 77–99. Horwood, Chichester, England (1998)Google Scholar
  3. 3.
    Patrick, H.L., Seltzer, S.M., Warren, M.E.: Guidance laws for short-range tactical missiles. J. Guid. Control Dyn. 4(2), 98–108 (1981)Google Scholar
  4. 4.
    Anderson, G.M.: Comparison of optimal control and differential game intercept missile guidance law. J. Guid. Control 4(2), 109–115 (1981)CrossRefGoogle Scholar
  5. 5.
    Ghose, D.: True proportional navigation with maneuvering target. IEEE Trans. Aerosp. Electron. Syst. 1(30), 229–237 (1994)CrossRefGoogle Scholar
  6. 6.
    Speyer, T.J., Kim, K., Tahk, M.: Passive homing missile guidance law based on new target manoeuvre models. Journal of Guidance 1(13), 803–812 (1990)MathSciNetGoogle Scholar
  7. 7.
    Yang, C.D., Yang, C.C.: A unified approach to proportional navigation. IEEE Trans. Aerosp. Electron. Syst. 33(2), 557–567 (1997)CrossRefGoogle Scholar
  8. 8.
    Yuan, P.J., Hsu, S.C.: Rendezvous guidance with proportional navigation. J. Guid. Control Dyn. 7(2), 409–411 (1993)Google Scholar
  9. 9.
    Guelman, M.: Guidance for asteroid rendezvous. J. Guid. Control Dyn. 14(5), 1080–1083 (1990)Google Scholar
  10. 10.
    Jensen, D.L.: Kinematics of rendezvous manoeuvres. Journal of Guidance 7(3), 307–314 (1984)MATHCrossRefGoogle Scholar
  11. 11.
    Piccardo, H.R., Hondered, G.: A new approach to on-line path planning and generation for robots in non-static environment. Robot. Auton. Syst. 187–201 (1991)Google Scholar
  12. 12.
    Mehrandezh, M., Sela, M.N., Fenton, R.G., Benhabib, B.: Robotic interception of moving objects using an augmented ideal proportional navigation guidance technique. IEEE Trans. Syst. Man Cybern. 30(3), 238–250 (2000)CrossRefGoogle Scholar
  13. 13.
    Borg, J.M., Mehrandezh, M., Fenton, R.G., Benhabib, B.: Navigation-guidance-based robotic interception of moving objects in industrial settings. J. Intell. Robot. Syst. 33(1), 1–23 (2002)MATHCrossRefGoogle Scholar
  14. 14.
    Agah, F., Mehrandezh, M., Fenton, R.G., Benhabib, B.: On-line robotic interception planning using rendezvous-guidance technique. J. Intell. Robot. Syst.: Theory and Applications 40(1), 23–44 (2004)CrossRefGoogle Scholar
  15. 15.
    Pérez, T.L., Wesley, M.A.: An algorithm for planning collision-free paths among polyhedral obstacles. Commun. ACM 22(10), 560–570 (1979)CrossRefGoogle Scholar
  16. 16.
    Jacob, T.S., Micha S.: On the ‘Piano Movers’ problem. I: the case of a two-dimensional rigid polygonal 569 body moving amidst polygonal barriers. Commun. Pure Appl. Math. 36(3), 345–398 (1983)MATHGoogle Scholar
  17. 17.
    Jacob, T.S., Micha, S.: On the ‘Piano Movers’ problem. II: General techniques for computing topological properties of real algebraic manifolds. Adv. Appl. Math. 4(3), 298–351 (1983)CrossRefMATHGoogle Scholar
  18. 18.
    Jacob, T.S., Micha, S.: On the ‘Piano Movers’ problem. III: Coordinating the motion of several independent bodies. The special case of circular bodies moving amidst polygonal barriers. Int. J. Rob. Res. 2(3), 46–75 (1983)Google Scholar
  19. 19.
    Elmer, G.G., Daniel, W.J.: Distance functions and their applications to robot path planning in the presence of obstacles. IEEE J. Robot. Autom. 1(1), 21–30 (1985)Google Scholar
  20. 20.
    Rosen, C.A., Nilsson, N.J.: Application of intelligent automata to reconnaissance (technical report). Stanford Research Institute (1967)Google Scholar
  21. 21.
    Parodi, A., Nitao, J., McTamaney, L.: An intelligent system for an autonomous vehicle. In: Proc. of IEEE Internat. Conf. on Robotics and Automation, San Francisco, CA, pp. 1657–1663, April 1986Google Scholar
  22. 22.
    Hu, H., Brady, M., Probert, P.: Navigation and control of a mobile robot among moving obstacles. In: Proc. of IEEE Conf. on Decision and Control, Brighton, England, pp. 698–703, December 1991Google Scholar
  23. 23.
    Cameron, S.: Obstacle avoidance and path planning. Ind. Rob. 21(5), 9–14 (1994)CrossRefGoogle Scholar
  24. 24.
    Latombe, J.C.: Robot Motion Planning. Kluwer, Boston (1991)Google Scholar
  25. 25.
    Hwang, Y. K., Ahuja, N.: Gross motion planning. ACM Comput. Surv. 24(3), 219–291 (1992)CrossRefGoogle Scholar
  26. 26.
    Baraquand, J., Langlois, B., Latombe, J.C.: Numerical potential field techniques for robot path planner. IEEE Trans. Syst. Man Cybern. 22(2), 224–241 (1992)CrossRefGoogle Scholar
  27. 27.
    Yahja, A., Stentz, A., Singh, S., Brumitt, B.L.: Framed-quadtree path planning for mobile robots operating in sparse environments. In: Proc. of IEEE Internat. Conf. on Robotics and Automation, Leuven, Belgium, pp. 650–655, May 1998Google Scholar
  28. 28.
    Chen, C., Danny, Z., Szczerba, R.J., Uhran, J.J. Jr.: A framed-quadtree approach for determining euclidean shortest paths in a 2-d environment. IEEE Trans. Robot. Autom. 13(5), 668–681 (1997)CrossRefGoogle Scholar
  29. 29.
    Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. Int. J. Rob. Res. 17(7), 711–727 (1998)Google Scholar
  30. 30.
    Seneviratne, L.D., Ko, W.-S., Earles, S.W.E.: Triangulation-based path for a mobile robot. Proc. Inst. Mech. Eng., C J. Mech. Eng. Sci. 211(5), 365–371 (1997)CrossRefGoogle Scholar
  31. 31.
    Noto, M., Sato, H.: A method for the shortest path search by extended Dijkstra algorithm. In: Proc. of IEEE Internat. Conf. on Systems, Man and Cybernetics, Nashville, TN, vol. 3, pp. 2316–2320, October 2000Google Scholar
  32. 32.
  33. 33.
    Bose, C.B., Amir, J.: Design of fiducials for accurate registration using machine vision. IEEE Trans. Pattern Anal. Mach. Intell. 12(12), 1196–1200 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Computer Integrated Manufacturing Laboratory, Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations