Skip to main content
Log in

Guidance-Based On-Line Robot Motion Planning for the Interception of Mobile Targets in Dynamic Environments

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents a novel method for the interception of moving targets in the presence of obstacles. The proposed method provides simultaneous positional interception and velocity matching of the target moving in a dynamic environment with static and/or mobile obstacles. An acceleration command for the autonomous robot (i.e., interceptor) is first obtained from a rendezvous-guidance technique that takes into account the kinematic and dynamic limitations of the interceptor, but not the motion of the obstacles. This command is subsequently augmented, though only when necessary, in order to avoid those obstacles that are about to interfere with the time-optimal motion of the interceptor. The augmenter acceleration command is obtained in our work through a modified cell-decomposition method. Extensive simulation and experimental results have clearly demonstrated the efficiency of the proposed interception method, tangibly better than other existing obstacle-avoidance methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yilmaz, A., Sami, O., Davis, R.P.: Flexible manufacturing systems: characteristics and assessment. Eng. Manage. Int. 4(3), 209–212 (1987)

    Article  Google Scholar 

  2. Shneydor, N.A.: Parallel navigation. In: Missile Guidance and Pursuit, pp. 77–99. Horwood, Chichester, England (1998)

  3. Patrick, H.L., Seltzer, S.M., Warren, M.E.: Guidance laws for short-range tactical missiles. J. Guid. Control Dyn. 4(2), 98–108 (1981)

    Google Scholar 

  4. Anderson, G.M.: Comparison of optimal control and differential game intercept missile guidance law. J. Guid. Control 4(2), 109–115 (1981)

    Article  Google Scholar 

  5. Ghose, D.: True proportional navigation with maneuvering target. IEEE Trans. Aerosp. Electron. Syst. 1(30), 229–237 (1994)

    Article  Google Scholar 

  6. Speyer, T.J., Kim, K., Tahk, M.: Passive homing missile guidance law based on new target manoeuvre models. Journal of Guidance 1(13), 803–812 (1990)

    MathSciNet  Google Scholar 

  7. Yang, C.D., Yang, C.C.: A unified approach to proportional navigation. IEEE Trans. Aerosp. Electron. Syst. 33(2), 557–567 (1997)

    Article  Google Scholar 

  8. Yuan, P.J., Hsu, S.C.: Rendezvous guidance with proportional navigation. J. Guid. Control Dyn. 7(2), 409–411 (1993)

    Google Scholar 

  9. Guelman, M.: Guidance for asteroid rendezvous. J. Guid. Control Dyn. 14(5), 1080–1083 (1990)

    Google Scholar 

  10. Jensen, D.L.: Kinematics of rendezvous manoeuvres. Journal of Guidance 7(3), 307–314 (1984)

    Article  MATH  Google Scholar 

  11. Piccardo, H.R., Hondered, G.: A new approach to on-line path planning and generation for robots in non-static environment. Robot. Auton. Syst. 187–201 (1991)

  12. Mehrandezh, M., Sela, M.N., Fenton, R.G., Benhabib, B.: Robotic interception of moving objects using an augmented ideal proportional navigation guidance technique. IEEE Trans. Syst. Man Cybern. 30(3), 238–250 (2000)

    Article  Google Scholar 

  13. Borg, J.M., Mehrandezh, M., Fenton, R.G., Benhabib, B.: Navigation-guidance-based robotic interception of moving objects in industrial settings. J. Intell. Robot. Syst. 33(1), 1–23 (2002)

    Article  MATH  Google Scholar 

  14. Agah, F., Mehrandezh, M., Fenton, R.G., Benhabib, B.: On-line robotic interception planning using rendezvous-guidance technique. J. Intell. Robot. Syst.: Theory and Applications 40(1), 23–44 (2004)

    Article  Google Scholar 

  15. Pérez, T.L., Wesley, M.A.: An algorithm for planning collision-free paths among polyhedral obstacles. Commun. ACM 22(10), 560–570 (1979)

    Article  Google Scholar 

  16. Jacob, T.S., Micha S.: On the ‘Piano Movers’ problem. I: the case of a two-dimensional rigid polygonal 569 body moving amidst polygonal barriers. Commun. Pure Appl. Math. 36(3), 345–398 (1983)

    MATH  Google Scholar 

  17. Jacob, T.S., Micha, S.: On the ‘Piano Movers’ problem. II: General techniques for computing topological properties of real algebraic manifolds. Adv. Appl. Math. 4(3), 298–351 (1983)

    Article  MATH  Google Scholar 

  18. Jacob, T.S., Micha, S.: On the ‘Piano Movers’ problem. III: Coordinating the motion of several independent bodies. The special case of circular bodies moving amidst polygonal barriers. Int. J. Rob. Res. 2(3), 46–75 (1983)

    Google Scholar 

  19. Elmer, G.G., Daniel, W.J.: Distance functions and their applications to robot path planning in the presence of obstacles. IEEE J. Robot. Autom. 1(1), 21–30 (1985)

    Google Scholar 

  20. Rosen, C.A., Nilsson, N.J.: Application of intelligent automata to reconnaissance (technical report). Stanford Research Institute (1967)

  21. Parodi, A., Nitao, J., McTamaney, L.: An intelligent system for an autonomous vehicle. In: Proc. of IEEE Internat. Conf. on Robotics and Automation, San Francisco, CA, pp. 1657–1663, April 1986

  22. Hu, H., Brady, M., Probert, P.: Navigation and control of a mobile robot among moving obstacles. In: Proc. of IEEE Conf. on Decision and Control, Brighton, England, pp. 698–703, December 1991

  23. Cameron, S.: Obstacle avoidance and path planning. Ind. Rob. 21(5), 9–14 (1994)

    Article  Google Scholar 

  24. Latombe, J.C.: Robot Motion Planning. Kluwer, Boston (1991)

    Google Scholar 

  25. Hwang, Y. K., Ahuja, N.: Gross motion planning. ACM Comput. Surv. 24(3), 219–291 (1992)

    Article  Google Scholar 

  26. Baraquand, J., Langlois, B., Latombe, J.C.: Numerical potential field techniques for robot path planner. IEEE Trans. Syst. Man Cybern. 22(2), 224–241 (1992)

    Article  Google Scholar 

  27. Yahja, A., Stentz, A., Singh, S., Brumitt, B.L.: Framed-quadtree path planning for mobile robots operating in sparse environments. In: Proc. of IEEE Internat. Conf. on Robotics and Automation, Leuven, Belgium, pp. 650–655, May 1998

  28. Chen, C., Danny, Z., Szczerba, R.J., Uhran, J.J. Jr.: A framed-quadtree approach for determining euclidean shortest paths in a 2-d environment. IEEE Trans. Robot. Autom. 13(5), 668–681 (1997)

    Article  Google Scholar 

  29. Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. Int. J. Rob. Res. 17(7), 711–727 (1998)

    Google Scholar 

  30. Seneviratne, L.D., Ko, W.-S., Earles, S.W.E.: Triangulation-based path for a mobile robot. Proc. Inst. Mech. Eng., C J. Mech. Eng. Sci. 211(5), 365–371 (1997)

    Article  Google Scholar 

  31. Noto, M., Sato, H.: A method for the shortest path search by extended Dijkstra algorithm. In: Proc. of IEEE Internat. Conf. on Systems, Man and Cybernetics, Nashville, TN, vol. 3, pp. 2316–2320, October 2000

  32. Bourgin, D.: Color Space FAQ, http://www.neuro.sfc.keio.ac.jp/~aly/polygon/info/color-space-faq.html, August (2004)

  33. Bose, C.B., Amir, J.: Design of fiducials for accurate registration using machine vision. IEEE Trans. Pattern Anal. Mach. Intell. 12(12), 1196–1200 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Kunwar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunwar, F., Wong, F., Mrad, R.B. et al. Guidance-Based On-Line Robot Motion Planning for the Interception of Mobile Targets in Dynamic Environments. J Intell Robot Syst 47, 341–360 (2006). https://doi.org/10.1007/s10846-006-9080-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-006-9080-2

Key words

Navigation