Journal of Intelligent and Robotic Systems

, Volume 47, Issue 2, pp 139–153 | Cite as

Inverse Kinematics of Human Arm Based on Multisensor Data Integration

  • Matjaž Mihelj


The paper considers a technique for computation of the inverse kinematic model of the human arm. The approach is based on measurements of the hand position and orientation as well as acceleration and angular rate of the upper arm segment. A quaternion description of orientation is used to avoid singularities in representations with Euler angles. A Kalman filter is designed to integrate sensory data from three different types of sensors. The algorithm enables estimation of human arm posture, which can be used in trajectory planning for rehabilitation robots, evaluation of motion of patients with movement disorders, and generation of virtual reality environments.

Key words

Kalman filter kinematics man–machine systems quaternion sensor integration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tejima, N.: Rehabilitation robotics: a review. Adv. Robot. 14, 551–564 (2000)CrossRefGoogle Scholar
  2. 2.
    Lenarčič, J., Klopčar, N.: Positional kinematics of humanoid arms. Robotica 24, 105–112 (2006)Google Scholar
  3. 3.
    Korein, J.: A geometric investigation of reach. Ph.D. Dissertation, University of Pennsylvania (1985)Google Scholar
  4. 4.
    Tolani, D., Badler, N.I.: Real-time inverse kinematics of the human arm. Presence 5, 393–401 (1996)Google Scholar
  5. 5.
    Koga, Y., Kondo, K., Kuffner, J., Latombe, J.: Planning motions with intentions. In: Proc., SIGGRAPH’94, Orlando, Florida, July 24-29, pp. 395–407 (1994)Google Scholar
  6. 6.
    Soechting, J.F., Flanders, M.: Sensorimotor representations for pointing to targets in three dimensional space. J. Neurophysiol. 62, 582–594 (1989)Google Scholar
  7. 7.
    Loftin, R.B., Maida, J.C., Yang, J.: Inverse kinematics of the human arm. Technical report, The University of Houston, Texas (1997)Google Scholar
  8. 8.
    Tsiotras, P., Longuski, J.M.: A new parametrization of the attitute kinematics. J. Astronaut. Sci. 43, 243–263 (1995)MathSciNetGoogle Scholar
  9. 9.
    Spring, K.W.: Euler parameters and the use of quaternion algebra in the manipulation of finite rotations: a review. Mech. Mach. Theory 21, 365–373 (1986)CrossRefGoogle Scholar
  10. 10.
    Shuster, M.D.: A survey of attitude representations. J. Astronaut. Sci. 41, 439–517 (1993)MathSciNetGoogle Scholar
  11. 11.
    Chou, J.C.K.: Quaternion kinematic and dynamic differential equations. IEEE Trans. Robot. Autom. 8, 53–64 (1992)CrossRefGoogle Scholar
  12. 12.
    Marins, J.L., Yun, X., Bachmann, E.R., McGhee, R.B., Zyda, M.J.: An extended kalman filter for quaternion-based orientation estimation using marg sensors. In: Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, Hawaii, pp. 2003–2011 (2001)Google Scholar
  13. 13.
    Yun, X., Lizarraga, M., Bachmann, E.R., McGhee, R.B.: An improved quaternion-based kalman filter for real-time tracking of rigid body orientation. In: Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, Nevada, pp. 1074–1079 (2003)Google Scholar
  14. 14.
    Kong, X.: INS algorithm using quaternion model for low cost IMU. Robot. Auton. Syst. 46, 221–246 (2004)CrossRefGoogle Scholar
  15. 15.
    Natale, C.: Interaction Control of Robot Manipulators. Springer, Berlin Heidelberg New York (2003)MATHGoogle Scholar
  16. 16.
    Stavdahl, O., Bondhus, A.K., Pettersen, K.Y., Malvig, K.E.: Optimal statistical operators for 3-dimensionsl rotational data: Geometric interpretations and application to prosthesis kinematics. Robotica 23, 283–292 (2005)CrossRefGoogle Scholar
  17. 17.
    Tolani, D., Goswami, A., Badler, N.I.: Real–time inverse kinematics techniques for anthropomorphic limbs. Graph. Models 62, 353–388 (2000)MATHCrossRefGoogle Scholar
  18. 18.
    Lee, J., Ha, I.: Sensor fusion and calibration for motion captures using accelerometers. In: Proceedings of the 1999 IEEE International Conference on Robotics & Automation, Detroit, Michigan, pp. 1954–1959 (1999)Google Scholar
  19. 19.
    Mihelj, M., Munih, M.: Estimation of human arm angles using hand pose data and upper arm radial acceleration measurements. In: Proceedings, 8th International Conference on Rehabilitation Robotics, Daejeon, Korea, pp. 302–305 (2003)Google Scholar
  20. 20.
    Ang, D.G.-E., Elkaim, G.H., Powell, J.D., Parkinson, B.W.: A gyro-free quaternion based attitude determination system suitable for implementation using low cost sensors. In: Proceedings of IEEE 2000 Position Location and Navigation Symposium, San Diego, California, pp. 185–192 (2000)Google Scholar
  21. 21.
    Kuipers, J.B.: Quaternions and Rotation Sequences. Addison-Wesley, Reading, Massachusetts (1999)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations