Advertisement

Journal of Intelligent and Robotic Systems

, Volume 44, Issue 2, pp 123–137 | Cite as

An Active System for Three-Dimensional Localization of Mobile Robots

  • Li-Chun Lai
  • Chia-Ju Wu
Research Article

Abstract

This paper presents an active system, which is composed of a laser range finder and four artificial reflectors, for the three-dimensional (3D) localization of a mobile robot. In this system, it will be proved that the position and the orientation of a mobile robot in a 3D space with respect to a reference frame can be determined provided that the four artificial reflectors are not installed in the same plane. Since the artificial reflectors cannot be treated as points in practice, the proposed localization procedure will be formulated as a nonlinear programming problem to account for actual sizes of the artificial reflectors. To show the validity and feasibility of the proposed method, a series of experiments will be given for illustration.

Key words

laser range finders mobile robots three-dimensional localization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aono, T., Fujii, K., Hatsumoto S., and Kamiya T.: Positioning of vehicle on undulating ground using GPS and dead reckoning, Proc. – IEEE. Int. Conf. Robot. Autom. 4 (1998), 3443–3448.Google Scholar
  2. 2.
    Arsenio, A. and Ribeiro, M. I.: Active range sensing for mobile robot localization, Proc. – IEEE/RSJ Int. Conf. Intell. Robots. Syst. 2 (1998), 1066–1071.Google Scholar
  3. 3.
    Borenstein, J., Everett, H. R. and Feng, L.: Sensors and Methods for Mobile Robot Positioning, University of Michigan, 1996.Google Scholar
  4. 4.
    Borges, G. A., Aldon, M. J., and Gil T.: An optimal pose estimator for map-based mobile robot dynamic localization: Experimental comparison with the EKF, Proc. – IEEE Int. Conf. Robot. Autom. 2 (2001), 1585–1590.Google Scholar
  5. 5.
    Bouvet, D. and Garcia ,G.: Civil-engineering articulated vehicle localization: Solutions to deal with GPS masking phases, Proc. – IEEE Int. Conf. Robot. Autom. 4 (2000) 3499–3504.Google Scholar
  6. 6.
    Canou, J., Novales C., Poisson, G. and Marche, P.: Quick primitives extraction using inertia matrix on measures issue from an ultrasonic network, Proc. – IEEE Int. Conf. Robot. Autom. 4 (2001), 3999–4004.Google Scholar
  7. 7.
    Chang, C. F., Tsai, C. C., Hsu, J. C., and Lin, C. C.: Laser pose tracking for a mobile robot using fuzzy adaptive extended information filtering, Proc. Am. Control Conf. 3 (2003), 2471–2476.CrossRefGoogle Scholar
  8. 8.
    Chung, H., Ojeda, L., and Borenstein, J.: Sensor fusion for mobile robot dead-reckoning with a precision-calibrated fiber optic gyroscope, Proc. – IEEE Int. Conf. Robot. Autom. 4 (2001), 3588–3593.Google Scholar
  9. 9.
    Craig, J. J.: Introduction to Robotics: Mechanics and Control, 2nd edn, Addison-Wesley, Reading, Massachusetts, 1989.MATHGoogle Scholar
  10. 10.
    Decker, S., Gander, H., Vincze, M., and Prenninger, J. P.: Dynamic measurement of position and orientation of robots, IEEE Trans. Instrum. Meas. 41 (1992) 897–901.CrossRefGoogle Scholar
  11. 11.
    Figueroa, F., and Mahajan, A.: A robust navigation system for autonomous vehicles using ultrasonics, Control Eng. Pract. 2 (1994), 49–59.CrossRefGoogle Scholar
  12. 12.
    Forsberg, J., Larsson, U., and Wernersson, A.: Mobile robot navigation using the range-weighted Hough transform, IEEE Robot. Autom. Mag. 2 (1995), 18–26.CrossRefGoogle Scholar
  13. 13.
    Fox, D., Burgard, W., and Thrun, S.: Markov localization for mobile robots in dynamic environments, J. Artif. Intell. Res. 11 (1999), 391–427.MATHGoogle Scholar
  14. 14.
    Gerald, C. F. and Wheatley, P. O.: Applied Numerical Analysis, 4th edn, Addison-Wesley, Reading, Massachusetts, 1989.MATHGoogle Scholar
  15. 15.
    Goel, P., Roumeliotis, S. I., and Sukhatme, G. S.: Robust localization using relative and absolute position estimates, Proc. – IEEE/RSJ Int. Conf. Intell. Robots Syst. 2 (1999), 1134–1140.Google Scholar
  16. 16.
    Jensfelt, P. and Christensen, H. I.: Pose tracking using laser scanning and minimalistic environmental models, IEEE Trans. Robot. Autom. 17 (2001), 138–147.CrossRefGoogle Scholar
  17. 17.
    Jensfelt, P. and Kristensen, S.: Active global localization for a mobile robot using multiple hypothesis tracking, IEEE Trans. Robot. Autom. 17 (2001) 748–760.CrossRefGoogle Scholar
  18. 18.
    Kim, J. H. and Seong, P. H.: Experiments on orientation recovery and steering of autonomous mobile robot using encoded magnetic compass disc, IEEE Trans. Instrum. Meas. 45 (1996), 271–273.CrossRefGoogle Scholar
  19. 19.
    Kolman, B. and Hill, D. R.: Elementary Linear Algebra, 7th edn, Prentice Hall, 1999.Google Scholar
  20. 20.
    Larsson, U., Forsberg, J., and Wernersson, A.: Mobile robot localization: Integrating measurements from a time-of-flight laser, IEEE Trans. Ind. Electron. 43 (1996), 422–431.CrossRefGoogle Scholar
  21. 21.
    Lin, H. H., Tsai, C. C., Hsu, J. C., and Chang, C. F.: Ultrasonic self-localization and pose tracking of an autonomous mobile robot via fuzzy adaptive extended information filtering, Proc. – IEEE Int. Conf. Robot. Autom. 1 (2003), 1283–1290.Google Scholar
  22. 22.
    Nagatani, K., Ishida, H., Yamanaka, S., and Tanaka, Y.: Three-dimensional localization and mapping for mobile robot in disaster environments, Proc. – IEEE/RSJ Int. Conf. Intell. Robots Syst. 3 (2003), 3112–3117.Google Scholar
  23. 23.
    Nishizawa, T., Ohya, A., and Yuta, S.: An implementation of on-board position estimation for a mobile robot, Proc. – IEEE Int. Conf. Robot Autom. 1 (1995), 395–400.Google Scholar
  24. 24.
    Song, K. T. and Suen, Y. H.: Design and implementation of a path tracking controller with the capacity of obstacle avoidance, in: Proc. of the 1996 Automatic Control Conference, Taipei, Taiwan, 1996, pp. 134–139.Google Scholar
  25. 25.
    Thrapp, R., Westbrook, C., and Subramanian, D.: Robust localization algorithms for an autonomous campus tour guide, Proc. – IEEE Int. Conf. Robot. Autom. 2 (2001), 2065–2071.Google Scholar
  26. 26.
    Thrun, S., Fox, D., Burgard, W., and Dellaert, F.: Robust Monte Carlo localization for mobile robots, Artif. Intell. 128 (2001), 99–141.CrossRefMATHGoogle Scholar
  27. 27.
    Tsai, C. C.: A localization system of a mobile robot by fusing dead-reckoning and ultrasonic measurements, IEEE Trans. Instrum. Meas. 47 (1998), 1399–1404.CrossRefGoogle Scholar
  28. 28.
    Victorino, A. C., Rives, P., and Borrelly, J. J.: Localization and map building using a sensor-based control strategy, Proc. – IEEE/RSJ Int. Conf. Intell. Robots Syst. 2 (2000), 937–942.Google Scholar
  29. 29.
    Wu, C. J. and Tsai, C. C.: Localization of an autonomous mobile robot based on ultrasonic sensory information, J. Intell. Robot. Syst. 30 (2001), 267–277.CrossRefMATHGoogle Scholar
  30. 30.
    Zhao, F. J., Guo, H. J., and Abe, K. I.: Mobile robot localization using two sonar sensors and one natural landmark, in: Proc. of the 37th SICE Annual Conference, 1998, pp. 893–898.Google Scholar
  31. 31.
    Zhao, F. J., Guo, H. J. and Abe, K. I.: A mobile robot localization using ultrasonic sensors in indoor environment, in: Proc. of the 6th IEEE International Workshop on Robot and Human Communication, 1997, pp. 52–57.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Graduate School of Engineering Science and TechnologyNational Yunlin University of Science and TechnologyTouliuTaiwan
  2. 2.Department of Electrical EngineeringNational Yunlin University of Science and TechnologyTouliuTaiwan

Personalised recommendations