Advertisement

Journal of Intelligent and Robotic Systems

, Volume 42, Issue 2, pp 113–133 | Cite as

Impedance Control of Flexible Robot Arms with Parametric Uncertainties

  • Zhao-Hui Jiang
Article

Abstract

This paper presents an adaptive impedance control strategy for flexible manipulators by using an end-effector trajectory control approach. The impedance control objective is converted into tracking a trajectory generated by a designed ideal impedance model. A manifold is designed to prescribe desirable performance of the system. An adaptive control scheme is derived in such that the motion of the system will converge and remain to the ideal manifold for the case of parametric uncertainties. Stability of the control system is analyzed. Simulations are carried out to demonstrate the effectiveness of the proposed control method.

Keywords

adaptive system flexible robot impedance control targeted impedance trajectory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albu-Schaffer, A., Ott, C., Frese, U., and Hirzinger, G.: 2003, Cartesian impedance control of redundant robot: Recent results with the DLR-light-weight-arms, in: Proc. of the IEEE Conf. on Robotics and Automation, pp. 3704–3709. Google Scholar
  2. Alder, L. J. and Rock, S. M.: 1994, Experiments in control of a flexible-link robotic manipulator with unknown payload dynamics: An adaptive approach, Internat. J. Robotics Res. 13(6), 481–495. Google Scholar
  3. Book, W. J.: 1984, Recursive Lagrangian dynamics of flexible manipulator arm, Internat. J. Robotics Res. 3(3), 424–431. Google Scholar
  4. Borowiec, J. and Tzes, A.: 1995, Frequency-shaped implicit force control of flexible link manipulators, in: Proc. of the IEEE Internat. Conf. on Robotics and Automation, pp. 913–918. Google Scholar
  5. Cheong, J., Youm, Y., and Chung, W. K.: 2002, Joint tracking controller for multi-link flexible robot using disturbance observer and parameter adaptation scheme, J. Robotic Systems 19(8), 401–417. Google Scholar
  6. Chiou, B. C. and Shahinpoor, M.: 1990, Dynamic stability analysis of a two-link force-controlled flexible manipulator, ASME J. Dyn. Systems Measm. Control 112, 661–666. Google Scholar
  7. De Luca, A., Lucibello, P., and Ulivi, G.: 1989, Inversion techniques for trajectory control of flexible robot arms, J. Robotic Systems 6(4), 325–344. Google Scholar
  8. Ferretti, G. et al.: 2004, Impedance control for elastic joints industrial manipulators, IEEE Trans. Robotics Automat. 20(3), 488–498. Google Scholar
  9. Hogan, N.: 1985, Impedance control: An approach to manipulation, Parts I–III, ASME J. Dyn. Systems Measm. Control 107(1), 1–24. Google Scholar
  10. Jiang, Z. H.: 1999, Impedance control of micro–macro robots with structural flexibility, Trans. Japan Soc. Mech. Engineers Series C 65(631), 142–149 (in Japanese). Google Scholar
  11. Jiang, Z. H., Uchiyama, M., and Hakomori, K.: 1987, Active compensating control of flexural error of elastic robot manipulators, in: Proc. of IMACS/IFAC Internat. Symp. on Modeling and Simulation of Distributed Parameter Systems, pp. 413–418. Google Scholar
  12. Lammerts, I. M. M., Veldpaus, F. E., Van de Molengraft, M. J., and Kok, J. J.: 1995, Adaptive computed reference computed torque control of flexible robots, ASME J. Dyn. Systems Measm. Control 117(2), 31–36. Google Scholar
  13. Lin, I. C. and Fu, L. C.: 1998, Adaptive hybrid force/position control of flexible manipulator for automated deburring with on-line cutting trajectory modification, in: Proc. of the IEEE Internat. Conf. on Robotics and Automation, pp. 818–825. Google Scholar
  14. Matsuno, F., Asano, T., and Sakawa, Y.: 1994, Modeling and quasi-static hybrid position/force control of constrained planar two-link flexible manipulators, IEEE Trans. Robotics Automat. 10(3), 287–297. Google Scholar
  15. Ott, C., Albu-Schaffer, A., Kugi, A., Stramigioli, S., and Hirzinger, G. A.: 2004, Passivity based Cartesian impedance controller for flexible joint robots – Part I: Torque feedback and gravity compensation, and Part II: Full state feedback, impedance design and experiments, in: Proc. of the IEEE Conf. on Robotics and Automation, pp. 2666–2672. Google Scholar
  16. Ozawa, R. and Kobayashi, H.: 2003, A new impedance control concept for elastic joint robots, in: Proc. of the IEEE Conf. on Robotics and Automation, pp. 3126–3131. Google Scholar
  17. Robinett, R. D. et al.: 2002, Flexible Robot Dynamics and Controls, IFSR International Series on Systems Science and Engineering, Kluwer Academic/Plenum, Dordrecht. Google Scholar
  18. Rocco, P. and Book, W. J.: 1996, Modeling for two-time scale force/position control of flexible robots, in: Proc. of the IEEE Internat. Conf. on Robotics and Automation, pp. 1941–1946. Google Scholar
  19. Siciliano, B. and Villani, L.: 2001, Two-time scale force/position control of flexible manipulators, in: Proc. of the IEEE Internat. Conf. on Robotics and Automation, pp. 2729–2734. Google Scholar
  20. Theodore, R. J. and Ghosal, A.: 1995, Comparison of the assumed models and finite element models for flexible multilink manipulators, Internat. J. Robotics Res. 14(2), 99–111. Google Scholar
  21. Yamano, M., Kim, J., and Uchiyama, M.: 1998, Hybrid position/force control of two cooperative flexible manipulators working in 3D space, in: Proc. of the IEEE Internat. Conf. on Robotics and Automation, pp. 1110–1115. Google Scholar
  22. Yoshikawa, T. et al.: 1996, Hybrid position/force control of flexible-macro/rigid-micro manipulator systems, IEEE Trans. Robotics Automat. 12(4), 633–640. Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of Mechanical Systems EngineeringHiroshima Institute of TechnologyHiroshimaJapan

Personalised recommendations