Skip to main content
Log in

Impedance Control of Flexible Robot Arms with Parametric Uncertainties

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents an adaptive impedance control strategy for flexible manipulators by using an end-effector trajectory control approach. The impedance control objective is converted into tracking a trajectory generated by a designed ideal impedance model. A manifold is designed to prescribe desirable performance of the system. An adaptive control scheme is derived in such that the motion of the system will converge and remain to the ideal manifold for the case of parametric uncertainties. Stability of the control system is analyzed. Simulations are carried out to demonstrate the effectiveness of the proposed control method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albu-Schaffer, A., Ott, C., Frese, U., and Hirzinger, G.: 2003, Cartesian impedance control of redundant robot: Recent results with the DLR-light-weight-arms, in: Proc. of the IEEE Conf. on Robotics and Automation, pp. 3704–3709.

  • Alder, L. J. and Rock, S. M.: 1994, Experiments in control of a flexible-link robotic manipulator with unknown payload dynamics: An adaptive approach, Internat. J. Robotics Res. 13(6), 481–495.

    Google Scholar 

  • Book, W. J.: 1984, Recursive Lagrangian dynamics of flexible manipulator arm, Internat. J. Robotics Res. 3(3), 424–431.

    Google Scholar 

  • Borowiec, J. and Tzes, A.: 1995, Frequency-shaped implicit force control of flexible link manipulators, in: Proc. of the IEEE Internat. Conf. on Robotics and Automation, pp. 913–918.

  • Cheong, J., Youm, Y., and Chung, W. K.: 2002, Joint tracking controller for multi-link flexible robot using disturbance observer and parameter adaptation scheme, J. Robotic Systems 19(8), 401–417.

    Google Scholar 

  • Chiou, B. C. and Shahinpoor, M.: 1990, Dynamic stability analysis of a two-link force-controlled flexible manipulator, ASME J. Dyn. Systems Measm. Control 112, 661–666.

    Google Scholar 

  • De Luca, A., Lucibello, P., and Ulivi, G.: 1989, Inversion techniques for trajectory control of flexible robot arms, J. Robotic Systems 6(4), 325–344.

    Google Scholar 

  • Ferretti, G. et al.: 2004, Impedance control for elastic joints industrial manipulators, IEEE Trans. Robotics Automat. 20(3), 488–498.

    Google Scholar 

  • Hogan, N.: 1985, Impedance control: An approach to manipulation, Parts I–III, ASME J. Dyn. Systems Measm. Control 107(1), 1–24.

    Google Scholar 

  • Jiang, Z. H.: 1999, Impedance control of micro–macro robots with structural flexibility, Trans. Japan Soc. Mech. Engineers Series C 65(631), 142–149 (in Japanese).

    Google Scholar 

  • Jiang, Z. H., Uchiyama, M., and Hakomori, K.: 1987, Active compensating control of flexural error of elastic robot manipulators, in: Proc. of IMACS/IFAC Internat. Symp. on Modeling and Simulation of Distributed Parameter Systems, pp. 413–418.

  • Lammerts, I. M. M., Veldpaus, F. E., Van de Molengraft, M. J., and Kok, J. J.: 1995, Adaptive computed reference computed torque control of flexible robots, ASME J. Dyn. Systems Measm. Control 117(2), 31–36.

    Google Scholar 

  • Lin, I. C. and Fu, L. C.: 1998, Adaptive hybrid force/position control of flexible manipulator for automated deburring with on-line cutting trajectory modification, in: Proc. of the IEEE Internat. Conf. on Robotics and Automation, pp. 818–825.

  • Matsuno, F., Asano, T., and Sakawa, Y.: 1994, Modeling and quasi-static hybrid position/force control of constrained planar two-link flexible manipulators, IEEE Trans. Robotics Automat. 10(3), 287–297.

    Google Scholar 

  • Ott, C., Albu-Schaffer, A., Kugi, A., Stramigioli, S., and Hirzinger, G. A.: 2004, Passivity based Cartesian impedance controller for flexible joint robots – Part I: Torque feedback and gravity compensation, and Part II: Full state feedback, impedance design and experiments, in: Proc. of the IEEE Conf. on Robotics and Automation, pp. 2666–2672.

  • Ozawa, R. and Kobayashi, H.: 2003, A new impedance control concept for elastic joint robots, in: Proc. of the IEEE Conf. on Robotics and Automation, pp. 3126–3131.

  • Robinett, R. D. et al.: 2002, Flexible Robot Dynamics and Controls, IFSR International Series on Systems Science and Engineering, Kluwer Academic/Plenum, Dordrecht.

    Google Scholar 

  • Rocco, P. and Book, W. J.: 1996, Modeling for two-time scale force/position control of flexible robots, in: Proc. of the IEEE Internat. Conf. on Robotics and Automation, pp. 1941–1946.

  • Siciliano, B. and Villani, L.: 2001, Two-time scale force/position control of flexible manipulators, in: Proc. of the IEEE Internat. Conf. on Robotics and Automation, pp. 2729–2734.

  • Theodore, R. J. and Ghosal, A.: 1995, Comparison of the assumed models and finite element models for flexible multilink manipulators, Internat. J. Robotics Res. 14(2), 99–111.

    Google Scholar 

  • Yamano, M., Kim, J., and Uchiyama, M.: 1998, Hybrid position/force control of two cooperative flexible manipulators working in 3D space, in: Proc. of the IEEE Internat. Conf. on Robotics and Automation, pp. 1110–1115.

  • Yoshikawa, T. et al.: 1996, Hybrid position/force control of flexible-macro/rigid-micro manipulator systems, IEEE Trans. Robotics Automat. 12(4), 633–640.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Hui Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, ZH. Impedance Control of Flexible Robot Arms with Parametric Uncertainties. J Intell Robot Syst 42, 113–133 (2005). https://doi.org/10.1007/s10846-005-0933-x

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-005-0933-x

Keywords

Navigation