VREDI: virtual representation for a digital twin application in a work-center-level asset administration shell

Abstract

The asset administration shell (AAS) has a virtual representation as an asset description and technical functionality as a smart manufacturing service. A digital twin (DT) is an advanced virtual factory technology that has simulation as its core technical functionality, which it performs in the type and instance stages of the physical asset. For providing an efficient information object to the DT application, this paper proposes Virtual REpresentation for a DIgital twin application (VREDI): an asset description for the operation procedures of a work-center-level DT application. For the successful application of DT as a smart factory technology, VREDI is designed to meet four core technical requirements—DT definition, AAS property inheritance, improving the existing asset description, and supporting DT-based technical functionalities. Based on the analysis of the technical requirements, the elements of VREDI are derived and the reference relationships between them are designed. It is then possible to provide the required technical functionality using the VREDI header, and a detailed P4R structure and elements of the body are defined. VREDI is applied to the concept to support the main properties of the DT. It is designed to inherit the AAS properties for efficient information management and interoperability. The application of advanced concepts such as “type and instance” and supporting vertical integration and horizontal coordination overcomes the limitations of the existing asset descriptions. Additionally, VREDI designates elements for supporting six DT-based technical functionalities in the type and instance stages of the physical work center.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Abbreviations

AAS:

Asset administration shell

API:

Application programming interface

BOM:

Bill of materials

CMSD:

Core manufacturing simulation data

CDL:

Configuration data library

CNC:

Computerized numerical control

CPPS:

Cyber physical production system

CPS:

Cyber physical system

CSPI:

Commercial off-the-shelf simulation package interoperability

DES:

Discrete event simulation

DDL:

Data description language

DT:

Digital twin

I4.0:

Industrie 4.0

ICT:

Information and communication technology

ID:

Identifier

IIoT:

Industrial internet of things

IoT:

Internet of things

MFC:

Microsoft foundation class

MHC:

Material handling conveyor

MHE:

Material handling equipment

MHR:

Material handling robots

MHV:

Material handling vehicle

MMS:

Modular manufacturing system

MSF:

Micro smart factory

MTBF:

Mean time between failures

MTTR:

Mean time to repair

NESIS:

Neutral simulation schema

P4R:

Product, process, plan, plant, and resource

PLC:

Programmable logic controller

RAMI:

Reference architectural model industrie

REST:

Representational state transfer

RBR:

Rule-based reasoning

SOA:

Service-oriented architecture

SOAP:

Simple object access protocol

STEP:

Standard for the exchange of product

UML:

Unified modeling language

VREDI:

Virtual representation for a digital twin application

WCF:

Windows communication foundation

WIP:

Work in process

XML:

Extensible markup language

References

  1. Adolphs, P., Auer, S., Bedenbender, H., Billmann, M., Hankel, M., Heidel, R., et al. (2016). Structure of the administration shell continuation of the development of the reference model for the Industrie 4.0 component. ZVEI and VDI, status report.

  2. Alam, K. M., & El Saddik, A. (2017). C2PS: A digital twin architecture reference model for the cloud-based cyber-physical systems. IEEE Access, 5, 2050–2062.

    Google Scholar 

  3. Bandyopadhyay, D., & Sen, J. (2011). Internet of things: Applications and challenges in technology and standardization. Wireless Personal Communications, 58(1), 49–69.

    Google Scholar 

  4. Bedenbender, H., Billmann, M., Epple, U., Hadlich, T., Hankel, M., Heidel, R., et al. (2017). Examples of the asset administration shell for Industrie 4.0 components—Basic part. ZVEI white paper.

  5. Bloomfield, R., Mazhari, E., Hawkins, J., & Son, Y. J. (2012). Interoperability of manufacturing applications using the core manufacturing simulation data (CMSD) standard information model. Computers and Industrial Engineering, 62(4), 1065–1079.

    Google Scholar 

  6. Cadavid, J. P. U., Lamouri, S., Grabot, B., Pellerin, R., & Fortin, A. (2020). Machine learning applied in production planning and control: A state-of-the-art in the era of industry 4.0. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-019-01531-7.

    Article  Google Scholar 

  7. Cheng, Y., Zhang, Y., Ji, P., Xu, W., Zhou, Z., & Tao, F. (2018). Cyber-physical integration for moving digital factories forward towards smart manufacturing: A survey. The International Journal of Advanced Manufacturing Technology, 97(1–4), 1209–1221.

    Google Scholar 

  8. Chuang, A. C. C. (2016). Discuss the standard of Industry 4.0. Hua University, Taiwan. http://www.ebc.nthu.edu.tw/StudentProject/eifinal/2015_eiProject/word/07.pdf. Retrieved May 9, 2019.

  9. da Cruz, M. A., Rodrigues, J. J. P., Al-Muhtadi, J., Korotaev, V. V., & de Albuquerque, V. H. C. (2018). A reference model for internet of things middleware. IEEE Internet of Things Journal, 5(2), 871–883.

    Google Scholar 

  10. Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In International conference on parallel problem solving from nature (pp. 849–858). Berlin: Springer.

  11. Derigent, W., Cardin, O., & Trentesaux, D. (2020). Industry 4.0: Contributions of holonic manufacturing control architectures and future challenges. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-020-01532-x.

    Article  Google Scholar 

  12. Dorst, W. (Ed.). (2015). Umsetzungsstrategie Industrie 4.0: Ergebnisbericht der Plattform Industrie 4.0. Berlin: Bitkom Research GmbH.

    Google Scholar 

  13. Fleischmann, H., Kohl, J., & Franke, J. (2016). A reference architecture for the development of socio-cyber-physical condition monitoring systems. In 2016 11th system of systems engineering conference (SoSE) (pp. 1–6). IEEE.

  14. Gabor, T., Belzner, L., Kiermeier, M., Beck, M. T., & Neitz, A. (2016). A simulation-based architecture for smart cyber-physical systems. In 2016 IEEE international conference on autonomic computing (ICAC) (pp. 374–379). IEEE.

  15. Grieves, M. (2014). Digital twin: Manufacturing excellence through virtual factory replication. White Paper, 1, 1–7.

    Google Scholar 

  16. Hankel, M., & Rexroth, B. (2015). The reference architectural model industrie 4.0 (rami 4.0). ZVEI, April.

  17. IEC. (2016). IEC TS 62832-1:2016 industrial-process measurement, control and automation—Digital factory framework—Part 1: General principles. https://webstore.iec.ch/publication/33023. Retrieved May 2, 2019.

  18. Jeon, B., Yoon, J. S., Um, J., & Suh, S. H. (2020). The architecture development of Industry 40 compliant smart machine tool system (SMTS). Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-020-01539-4.

    Article  Google Scholar 

  19. Kagermann, H., Helbig, J., Hellinger, A., & Wahlster, W. (2013). Recommendations for implementing the strategic initiative INDUSTRIE 4.0: Securing the future of German manufacturing industry; final report of the Industrie 4.0 Working Group. Forschungsunion.

  20. Kang, H. S., Noh, S. D., Son, J. Y., Kim, H., Park, J. H., & Lee, J. Y. (2018). The FaaS system using additive manufacturing for personalized production. Rapid Prototyping Journal, 24(9), 1486–1499.

    Google Scholar 

  21. Kim, D. Y., Park, J. W., Baek, S., Park, K. B., Kim, H. R., Park, J. I., et al. (2020). A modular factory testbed for the rapid reconfiguration of manufacturing systems. Journal of Intelligent Manufacturing, 31(3), 661–680.

    Google Scholar 

  22. Komoda, N. (2006). Service oriented architecture (SOA) in industrial systems. In 2006 4th IEEE international conference on industrial informatics (pp. 1–5). IEEE.

  23. Lee, J. Y., Kang, H. S., Kim, G. Y., & Do Noh, S. (2012). Concurrent material flow analysis by P3R-driven modeling and simulation in PLM. Computers in Industry, 63(5), 513–527.

    Google Scholar 

  24. Lee, J. Y., Kang, H. S., Noh, S. D., Woo, J. H., & Lee, P. (2011). NESIS: A neutral schema for a web-based simulation model exchange service across heterogeneous simulation software. International Journal of Computer Integrated Manufacturing, 24(10), 948–969.

    Google Scholar 

  25. Li, L. (2018). China’s manufacturing locus in 2025: With a comparison of “Made-in-China 2025” and “Industry 4.0”. Technological Forecasting and Social Change, 135, 66–74.

    Google Scholar 

  26. Liao, Y., Loures, E. D. F. R., & Deschamps, F. (2018). Industrial internet of things: A systematic literature review and insights. IEEE Internet of Things Journal, 5(6), 4515–4525.

    Google Scholar 

  27. Lim, K. Y. H., Zheng, P., & Chen, C. H. (2019). A state-of-the-art survey of Digital Twin: techniques, engineering product lifecycle management and business innovation perspectives. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-019-01512-w.

    Article  Google Scholar 

  28. Liu, Q., Zhang, H., Leng, J., & Chen, X. (2019). Digital twin-driven rapid individualised designing of automated flow-shop manufacturing system. International Journal of Production Research, 57(12), 3903–3919.

    Google Scholar 

  29. MacKenzie, C. M., Laskey, K., McCabe, F., Brown, P. F., Metz, R., & Hamilton, B. A. (2006). Reference model for service oriented architecture 1.0. OASIS Standard12(S 18).

  30. Mónica, R. L., Christian, B., Friedrich, M., Bernd, K., Urlich, B., & Waldemar, S. (2016). Agent-based communication to map and exchange shop floor data between MES and material flow simulation based on the open standard CMSD. IFAC-PapersOnLine, 49(12), 1526–1531.

    Google Scholar 

  31. Ngai, E. W. T., Moon, K. K., Riggins, F. J., & Candace, Y. Y. (2008). RFID research: An academic literature review (1995–2005) and future research directions. International Journal of Production Economics, 112(2), 510–520.

    Google Scholar 

  32. Nikolakis, N., Alexopoulos, K., Xanthakis, E., & Chryssolouris, G. (2019). The digital twin implementation for linking the virtual representation of human-based production tasks to their physical counterpart in the factory-floor. International Journal of Computer Integrated Manufacturing, 32(1), 1–12.

    Google Scholar 

  33. Oztemel, E., & Gursev, S. (2020). Literature review of Industry 4.0 and related technologies. Journal of Intelligent Manufacturing, 31(1), 127–182.

    Google Scholar 

  34. Papazoglou, M. P., Traverso, P., Dustdar, S., & Leymann, F. (2007). Service-oriented computing: State of the art and research challenges. Computer, 40(11), 38–45.

    Google Scholar 

  35. Park, K. T., Im, S. J., Kang, Y. S., Noh, S. D., Kang, Y. T., & Yang, S. G. (2019a). Service-oriented platform for smart operation of dyeing and finishing industry. International Journal of Computer Integrated Manufacturing, 32(3), 307–326.

    Google Scholar 

  36. Park, K. T., Lee, J., Kim, H.-J., & Noh, S. D. (2020). Digital twin-based cyber physical production system architectural framework for personalized production. The International Journal of Advanced Manufacturing Technology, 106(5–6), 1787–1810.

    Google Scholar 

  37. Park, K. T., Nam, Y. W., Lee, H. S., Im, S. J., Noh, S. D., Son, J. Y., et al. (2019b). Design and implementation of a digital twin application for a connected micro smart factory. International Journal of Computer Integrated Manufacturing, 32(6), 596–614.

    Google Scholar 

  38. Perrey, R., & Lycett, M. (2003). Service-oriented architecture. In Proceedings of the 2003 symposium on applications and the internet workshops, 2003 (pp. 116–119). IEEE.

  39. Qi, Q., & Tao, F. (2018). Digital twin and big data towards smart manufacturing and industry 4.0: 360 degree comparison. IEEE Access, 6, 3585–3593.

    Google Scholar 

  40. Qi, Q., Tao, F., Zuo, Y., & Zhao, D. (2018). Digital twin service towards smart manufacturing. Procedia Cirp, 72, 237–242.

    Google Scholar 

  41. Ramollari, E., Dranidis, D., & Simons, A. J. (2007). A survey of service oriented development methodologies. In The 2nd European young researchers workshop on service oriented computing (Vol. 75).

  42. Redelinghuys, A. J. H., Basson, A. H., & Kruger, K. (2019). A six-layer architecture for the digital twin: A manufacturing case study implementation. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-019-01516-6.

    Article  Google Scholar 

  43. Riddick, F., & Lee, T. (2010). Core manufacturing simulation data (CMSD): A standard representation for manufacturing simulation-related information. Gaithersburg: National Institute of Standards and Technology.

    Google Scholar 

  44. Schleich, B., Anwer, N., Mathieu, L., & Wartzack, S. (2017). Shaping the digital twin for design and production engineering. CIRP Annals, 66(1), 141–144.

    Google Scholar 

  45. Schroeder, G. N., Steinmetz, C., Pereira, C. E., & Espindola, D. B. (2016). Digital twin data modeling with automationml and a communication methodology for data exchange. IFAC-PapersOnline, 49(30), 12–17.

    Google Scholar 

  46. SISO. (2010). SISO-STD-006-2010: Standard for commercial off-the-shelf (COTS) simulation package interoperability (CSPI) reference models. Simulation Interoperability Standards Organization.

  47. SISO. (2012). SISO-STD-008-01-2012: Standard for core manufacturing simulation data—XML representation. Simulation Interoperability Standards Organization.

  48. Son, J. Y., Kang, H. C., Bae, H. C., Lee, E. S., Han, H. N., Park, J. H., et al. (2015). IoT-based open manufacturing service platform for mass personalization. The Journal of the Korean Institute of Communication Sciences, 33(1), 42–47.

    Google Scholar 

  49. Suri, K., Cadavid, J., Alferez, M., Dhouib, S., & Tucci-Piergiovanni, S. (2017). Modeling business motivation and underlying processes for RAMI 4.0-aligned cyber-physical production systems. In 2017 22nd IEEE international conference on emerging technologies and factory automation (ETFA) (pp. 1–6). IEEE.

  50. Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., & Sui, F. (2018). Digital twin-driven product design, manufacturing and service with big data. The International Journal of Advanced Manufacturing Technology, 94(9–12), 3563–3576.

    Google Scholar 

  51. Tao, F., & Zhang, M. (2017). Digital twin shop-floor: A new shop-floor paradigm towards smart manufacturing. IEEE Access, 5, 20418–20427.

    Google Scholar 

  52. Tao, F., Zhang, M., & Nee, A. Y. C. (2019). Digital twin driven smart manufacturing. Cambridge: Academic Press.

    Google Scholar 

  53. Thompson, K. D. (2014). Smart manufacturing operations planning and control program. Gaithersburg: National Institute of Standards and Technology.

    Google Scholar 

  54. Tong, X., Liu, Q., Pi, S., & Xiao, Y. (2019). Real-time machining data application and service based on IMT digital twin. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-019-01500-0.

    Article  Google Scholar 

  55. Uhlemann, T. H. J., Schock, C., Lehmann, C., Freiberger, S., & Steinhilper, R. (2017). The digital twin: Demonstrating the potential of real time data acquisition in production systems. Procedia Manufacturing, 9, 113–120.

    Google Scholar 

  56. Vachálek, J., Bartalský, L., Rovný, O., Šišmišová, D., Morháč, M., & Lokšík, M. (2017). The digital twin of an industrial production line within the industry 4.0 concept. In 2017 21st international conference on process control (PC) (pp. 258–262). IEEE.

  57. Weber, C., Königsberger, J., Kassner, L., & Mitschang, B. (2017). M2DDM: A maturity model for data-driven manufacturing. Procedia CIRP, 63, 173–178.

    Google Scholar 

  58. Weyrich, M., & Ebert, C. (2015). Reference architectures for the internet of things. IEEE Software, 33(1), 112–116.

    Google Scholar 

  59. Wiktorsson, M., Noh, S. D., Bellgran, M., & Hanson, L. (2018). Smart factories: South Korean and Swedish examples on manufacturing settings. Procedia Manufacturing, 25, 471–478.

    Google Scholar 

  60. Xu, L. D., He, W., & Li, S. (2014). Internet of things in industries: A survey. IEEE Transactions on Industrial Informatics, 10(4), 2233–2243.

    Google Scholar 

  61. Yaqoob, I., Ahmed, E., Hashem, I. A. T., Ahmed, A. I. A., Gani, A., Imran, M., et al. (2017). Internet of things architecture: Recent advances, taxonomy, requirements, and open challenges. IEEE Wireless Communications, 24(3), 10–16.

    Google Scholar 

  62. Yoon, S., Um, J., Suh, S. H., Stroud, I., & Yoon, J. S. (2019). Smart Factory Information Service Bus (SIBUS) for manufacturing application: Requirement, architecture and implementation. Journal of Intelligent Manufacturing, 30(1), 363–382.

    Google Scholar 

  63. Zezulka, F., Marcon, P., Vesely, I., & Sajdl, O. (2016). Industry 40—An introduction in the phenomenon. IFAC-PapersOnLine, 49(25), 8–12.

    Google Scholar 

  64. Zhang, H., Liu, Q., Chen, X., Zhang, D., & Leng, J. (2017). A digital twin-based approach for designing and multi-objective optimization of hollow glass production line. IEEE Access, 5, 26901–26911.

    Google Scholar 

  65. Zhang, Y., Zhang, G., Wang, J., Sun, S., Si, S., & Yang, T. (2015). Real-time information capturing and integration framework of the internet of manufacturing things. International Journal of Computer Integrated Manufacturing, 28(8), 811–822.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the IT R&D Program of MOTIE/KEIT (10052972, Development of the Reconfigurable Manufacturing Core Technology Based on the Flexible Assembly and ICT Converged Smart Systems) and the WC300 Project (S2482274, Development of Multi-vehicle Flexible Manufacturing Platform Technology for Future Smart Automotive Body Production) funded by the Ministry of SMEs and Startups.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sang Do Noh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, K.T., Yang, J. & Noh, S.D. VREDI: virtual representation for a digital twin application in a work-center-level asset administration shell. J Intell Manuf 32, 501–544 (2021). https://doi.org/10.1007/s10845-020-01586-x

Download citation

Keywords

  • Asset description
  • Digital twin
  • Digital-twin-based technical functionality
  • Service-oriented architecture
  • Virtual representation
  • Work-center-level asset administration shell