A case study of conditional deep convolutional generative adversarial networks in machine fault diagnosis

Abstract

Due to the real working conditions, the collected mechanical fault datasets are actually limited and always highly imbalanced, which restricts the diagnosis accuracy and stability. To solve these problems, we present an imbalanced fault diagnosis method based on the generative model of conditional-deep convolutional generative adversarial network (C-DCGAN) and provide a study in detail. Deep convolutional generative adversarial network (DCGAN), based on traditional generative adversarial networks (GAN), introduces convolutional neural network into the training for unsupervised learning to improve the effect of generative networks. Conditional generative adversarial network (CGAN) is a conditional model obtained through introducing conditional extension into GAN. C-DCGAN is a combination of DCGAN and CGAN. In C-DCGAN, based on the feature extraction ability of convolutional networks, through the structural optimization, conditional auxiliary generative samples are used as augmented data and applied in machine fault diagnosis. Two datasets (Bearing dataset and Planetary gear box dataset) are carried out to validate. The simulation experiments showed that the improved performance is mainly due to the generated signals from C-DCGAN to balance the dataset. The proposed method can deal with imbalanced fault classification problem much more effectively. This model could improve the accuracy of fault diagnosis and the generalization ability of the classifier in the case of small samples and display better fault diagnosis performance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. Buxton, B., Goldston, D., & Doctorow, C. (2008). Big data: Science in the petabyte era. Nature, 455, 1–136.

    Article  Google Scholar 

  2. Buda, M., Maki, A., & Mazurowski, M. A. (2018). A systematic study of the class imbalance problem in convolutional neural networks. Neural Networks, 106, 249–259.

    Article  Google Scholar 

  3. Brock, A., Donahue, J., & Simonyan, K. (2018). Large scale GAN training for high fidelity natural image synthesis. Computer Science for Machine Learning. arXiv preprint arXiv:1809.11096.

  4. Bearing Data Center. http://csegroups.case.edu/bearingdatacenter/home.

  5. Chen, X., Wang, S., Qiao, B., & Chen, Q. (2018). Basic research on machinery fault diagnostics: Past, present, and future trends. Frontiers of Mechanical Engineering, 13(2), 264–291.

    Article  Google Scholar 

  6. Chen, J., Li, Z., Pan, J., Chen, G., Zi, Y., Yuan, J., et al. (2016). Wavelet transform based on inner product in fault diagnosis of rotating machinery: A review. Mechanical Systems and Signal Processing, 70, 1–35.

    Article  Google Scholar 

  7. Creswell, A., White, T., Dumoulin, V., Kai, A., Sengupta, B., & Bharath, A. A. (2017). Generative adversarial networks: An overview. IEEE Signal Processing Magazine, 35, 53–65.

    Article  Google Scholar 

  8. Chang, L., Deng, X. M., Zhou, M. Q., & Wu, Z. K. (2016). Convolutional neural networks in image understanding. Acta Automatica Sinica, 42(9), 1300–1312.

    Google Scholar 

  9. Ding, Y., Ma, J., Ma, J., Wang, C., & Lu, C. (2019). A generative adversarial network-based intelligent fault diagnosis method for rotating machinery under small sample size conditions. IEEE Access, 7, 149736–149749.

    Article  Google Scholar 

  10. Elbouchikhi, E., Choqueuse, V., Amirat, Y., Benbouzid, M. E. H., & Turri, S. (2017). An efficient Hilbert–Huang transform-based bearing faults detection in induction machines. IEEE Transactions on Energy Conversion, 32, 401–413.

    Article  Google Scholar 

  11. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., et al. (2014). Generative adversarial nets. International Conference on Neural Information Processing Systems, 3, 2672–2680.

    Google Scholar 

  12. Gu, J., Wang, Z., Kuen, J., Ma, L., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X. & Wang, G. (2015). Recent advances in convolutional neural networks. arXiv preprint arXiv:1512.07108.

  13. Ioffe, S., & Szegedy, C. (2015). Batch normalization: accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd international conference on machine learning (pp 448 − 456).

  14. Jiang, W., Hong, Y., Zhou, B., He, X., & Cheng, C. (2019). A GAN-based anomaly detection approach for imbalanced industrial time series. IEEE Access, 7, 143608–143619.

    Article  Google Scholar 

  15. Khodja, M. E. A., Aimer, A. F., Boudinar, A. H., Benouzza, N., & Bendiabdellah, A. (2019). Bearing fault diagnosis of a PWM inverter fed-induction motor using an improved short time Fourier transform. Journal of Electrical Engineering and Technology, 14, 1201–1210.

    Article  Google Scholar 

  16. Kou, L. L., Qin, Y., Zhao, X. J., & Fu, Y. (2019). Integrating synthetic minority oversampling and gradient boosting decision tree for bogie fault diagnosis in rail vehicles. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 233, 312–325.

    Article  Google Scholar 

  17. Kingma, D., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

  18. Lee, Y.O., Jo, J., & Hwang, J. (2017). Application of deep neural network and generative adversarial network to industrial maintenance: A case study of induction motor fault detection. In ProceedingsIEEE international conference on big data (Big Data) (pp. 3248–3253).

  19. Lei, Y., Feng, J., Kong, D., Lin, J., & Xing, S. (2018). Opportunities and challenges of machinery intelligent fault diagnosis in big data era. Journal of Mechanical Engineering, 54(05), 94–104. https://doi.org/10.3901/JME.2018.05.094.

    Article  Google Scholar 

  20. Li, Y., Si, S., Liu, Z., & Liang, X. (2019). Review of local mean decomposition and its application in fault diagnosis of rotating machinery. Journal of Systems Engineering and Electronics, 30(4), 799–814.

    Article  Google Scholar 

  21. Liu, B., Fu, J., Kato, M. P., & Masatoshi, Y. (2018a). Beyond narrative description: generating poetry from images by multi-adversarial training. arXiv preprint arXiv:1804.08473.

  22. Liu, H., Zhou, J., Xu, Y., Zheng, Y., Peng, X., & Jiang, W. (2018b). Unsupervised fault diagnosis of rolling bearings using a deep neural network based on generative adversarial networks. Neurocomputing, 315, 412–424.

    Article  Google Scholar 

  23. Long, W., Li, X., Liang, G., & Zhang, Y. (2018). A new convolutional neural network based data-driven fault diagnosis method. IEEE Transactions on Industrial Electronics, 65, 5990–5998.

    Article  Google Scholar 

  24. Loshchilov, I., & Hutter, F. (2017). Fixing weight decay regularization in Adam. arXiv preprint arXiv:1711.05101v1.

  25. Lu, X., Chen, M., Wu, J., & Chan, P. (2015). A feature-partition and under-sampling based ensemble classifier for web spam detection. International Journal of Machine Learning and Computing, 5, 454–457.

    Article  Google Scholar 

  26. Mathieu, M., Couprie, C., & Lecun, Y. (2015). Deep multi-scale video prediction beyond mean square error. arXiv preprint arXiv:1511.05440.

  27. Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784.

  28. Mao, W., Liu, Y., Ding, L., & Li, Y. (2019). Imbalanced fault diagnosis of rolling bearing based on generative adversarial network: A comparative study. IEEE Access, 7, 9515–9530.

    Article  Google Scholar 

  29. Nasiri, S., Khosravani, M. R., & Weinberg, K. (2017). Fracture mechanics and mechanical fault detection by artificial intelligence methods: A review. Engineering Failure Analysis, 81, 270–293.

    Article  Google Scholar 

  30. Ng, W. W., Hu, J., Yeung, D. S., Yin, S., & Roli, F. (2015). Diversified sensitivity-based under sampling for imbalance classification problems. IEEE Transactions on Cybernetics, 45, 2402–2412.

    Article  Google Scholar 

  31. Plakias, S., & Boutalis, Y. S. (2019). Exploiting the generative adversarial framework for one-class multi-dimensional fault detection. Neurocomputing, 332, 396–405.

    Article  Google Scholar 

  32. Ren, M., Zhang, Q., & Zhang, J. (2019). An introductory survey of probability density function control. Systems Science & Control Engineering, 7(1), 158–170.

    Article  Google Scholar 

  33. Rama, K. K., & Ramachandran, K. I. (2018). Machinery bearing fault diagnosis using variational mode decomposition and support vector machine as a classifier. Materials Science and Engineering Conference Series, 310(2), 12076.

    Article  Google Scholar 

  34. Ren, H., Qu, J., Chai, Y., Tang, Q., & Ye, X. (2017). Deep learning for fault diagnosis: the state of the art and challenge. Journal of Control and Decision, 32(8), 1345–1358. https://doi.org/10.13195/j.kzyjc.2016.1625.

    Article  Google Scholar 

  35. Ramentol, E., Caballero, Y., Bello, R., & Herrera, F. (2012). SMOTE-RSB*: A hybrid preprocessing approach based on oversampling and under sampling for high imbalanced data-sets using SMOTE and rough sets theory. Knowledge and Information Systems, 33, 245–265.

    Article  Google Scholar 

  36. Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434.

  37. Shao, H., Jiang, H., Zhang, H., Duan, W., Liang, T., & Wu, S. (2018). Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing. Mechanical Systems and Signal Processing, 100, 743–765.

    Article  Google Scholar 

  38. Suh, S., Lee, H., Jo, J., Lukowicz, P., & Lee, Y. O. (2019). Generative oversampling method for imbalanced data on bearing fault detection and diagnosis. Applied Sciences, 9(4), 746.

    Article  Google Scholar 

  39. Sun, M., Qian, H., Zhu, K., Guan, D., & Wang, R. (2017). Ensemble learning and SMOTE based fault diagnosis system in selforganizing cellular networks. In: IEEE global communications conference (pp 1–6).

  40. Salehinejad, H., Valaee, S., Colak, E., Barfett, J., & Dowdell, T. (2017). Generalization of deep neural networks for chest pathology classification in X-rays using generative adversarial networks. In ProceedingsIEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 990–994).

  41. Simon, M., Rodner, E., & Denzler, J. (2016). Image Net pre-trained models with batch normalization. arXiv preprint arXiv:1612.01452.

  42. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(1), 1929–1958.

    Google Scholar 

  43. Springenberg, J. T. (2015). Unsupervised and semi-supervised learning with categorical generative adversarial networks. arXiv preprint arXiv:1511.06390.

  44. Shao, S., Wang, P., & Yan, R. Q. (2019). Generative adversarial networks for data augmentation in machine fault diagnosis. Computers in Industry, 106(4), 85–93.

    Article  Google Scholar 

  45. Smith, W. A., & Randall, R. B. (2015). Rolling element bearing diagnostics using the case western reserve university data: A benchmark study. Mechanical Systems and Signal Processing, 64–65, 100–131.

    Article  Google Scholar 

  46. Wang, Z., Wang, J., & Wang, Y. (2018). An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition. Neurocomputing, 310, 213–222.

    Article  Google Scholar 

  47. Xu, Q., Lu, S., Jia, W., & Jiang, C. (2019). Imbalanced fault diagnosis of rotating machinery via multi-domain feature extraction and cost-sensitive learning. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-019-01522-8.

    Article  Google Scholar 

  48. Yin, X., Zhang, Q., Wang, H., & Ding, Z. (2019). RBFNN-based minimum entropy filtering for a class of stochastic nonlinear systems. IEEE Transactions on Automatic Control, 65(1), 376–381.

    Article  Google Scholar 

  49. Zhang, X., Xiang, Zh, & Tang, Ch. (2018). A deep convolutional auto-encoding neural network and its application in bearing fault diagnosis. Journal of Xi’an Jiao Tong University, 52(7), 1–8. https://doi.org/10.7652/xjtuxb201807001.

    Article  Google Scholar 

  50. Zhou, F., Jin, L., & Dong, J. (2017). Review of convolutional neural network. Chinese Journal of Computers, 40(6), 1229–1251.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Editor-in-Chief, the Associate Editor, and anonymous referees for their helpful comments and constructive guidance. This work is supported by the Young Science Foundation of Shanxi province, China (201901D211202) and Key R&D program of Shanxi Province (International Cooperation, 201903D421008).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jinying Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Huang, J. & Li, H. A case study of conditional deep convolutional generative adversarial networks in machine fault diagnosis. J Intell Manuf 32, 407–425 (2021). https://doi.org/10.1007/s10845-020-01579-w

Download citation

Keywords

  • Generative adversarial network
  • Convolutional neural network
  • Conditional model
  • Data augmentation
  • Machine fault diagnosis