Skip to main content
Log in

An upgraded firefly algorithm with feasibility-based rules for constrained engineering optimization problems

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

The firefly algorithm (FA) has become one of the most prominent swarm intelligence methods due to its efficiency in solving a wide range of various real-world problems. In this paper, an upgraded firefly algorithm (UFA) is proposed to further improve its performance in solving constrained engineering optimization problems. The main modifications of the basic algorithm are the incorporation of the logistic map and reduction scheme mechanism in order to perform fine adjustments of its control parameters, and employing a mutation operator in order to provide useful diversity in the population. Also, the proposed approach uses certain feasibility-based rules in order to guide the search to the feasible region of the search space, the improved scheme to handle the boundary constraints and the method for handling equality constraints. The UFA is tested on a set of 24 benchmark functions presented in CEC’2006 and nine widely used constrained engineering optimization problems. Comprehensive experimental results show that the overall performance of the UFA is superior to the FA and its recently proposed variants. Moreover, it achieves highly competitive results compared with other state-of-the-art metaheuristic techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akay, B., & Karaboga, D. (2012). Artifcial bee colony algorithm for large-scale problems and engineering design optimization. Journal of Intelligent Manufacturing, 23(4), 1001–1014.

    Article  Google Scholar 

  • Alvarado-Iniesta, A., García-Alcaraz, J. L., Piña-Monarrez, M., & Pérez-Domínguez, L. (2016). Multiobjective optimization of torch brazing process by a hybrid of fuzzy logic and multiobjective artificial bee colony algorithm. Journal of Intelligent Manufacturing, 27(3), 631–638.

    Article  Google Scholar 

  • Askarzadeh, A. (2016). A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Computers and Structures, 169, 1–12.

    Article  Google Scholar 

  • Baykasolu, A., & Ozsoydan, F. B. (2015). Adaptive firefly algorithm with chaos for mechanical design optimization problems. Applied Soft Computing, 36, 152–164.

    Article  Google Scholar 

  • Brajevic, I. (2015). Crossover-based artificial bee colony algorithm for constrained optimization problems. Neural Computing and Applications, 26(7), 1587–1601.

    Article  Google Scholar 

  • Brajevic, I., & Ignjatović, J. (2015). An enhanced firefly algorithm for mixed variable structural optimization problems. Facta Universitatis, Ser Math Inform, 30(4), 401–417.

    Google Scholar 

  • Brajevic, I., & Tuba, M. (2013). An upgraded artificial bee colony (ABC) algorithm for constrained optimization problems. Journal of Intelligent Manufacturing, 24(4), 729–740.

    Article  Google Scholar 

  • Cagnina, L. C., Esquive, S. C., & Coello, C. A. C. (2008). Solving engineering optimization problems with the simple constrained particle swarm optimizer. Informatica, 32, 319–326.

    Google Scholar 

  • Čerpinšek, M., Liu, S. H., & Mernik, M. (2013). Exploration and exploitation in evolutionary algorithms: A survey. ACM Computing Surveys (CSUR), 45(3), 1–33.

    Article  Google Scholar 

  • Cheng, M. Y., & Prayogo, D. (2014). Symbiotic organisms search: A new metaheuristic optimization algorithm. Computers and Structures, 139, 98–112.

    Article  Google Scholar 

  • Chou, J. S., & Ngo, N. T. (2016). Modified firefly algorithm for multidimensional optimization in structural design problems. Structural and Multidisciplinary Optimization,. https://doi.org/10.1007/s00158-016-1624-x.

    Article  Google Scholar 

  • de Melo, V. V., & Carosio, G. L. (2013). Investigating multi-view differential evolution for solving constrained engineering design problems. Expert Systems with Applications, 40(9), 3370–3377.

    Article  Google Scholar 

  • Deb, K. (2000). An efficient constraint-handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering, 186(2–4), 311–338.

    Article  Google Scholar 

  • Deb, K., & Goyal, M. (1995). Optimizing engineering designs using a combined genetic search. In Proceedings of the 6th international conference on genetic algorithms (pp. 521–528). Morgan Kauffman Publishers.

  • Derrac, J., Garca, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation, 1(1), 3–18.

    Article  Google Scholar 

  • Deshpande, A. M., Phatnani, G. M., & Kulkarni, A. J. (2013). Constraint handling in firefly algorithm. In 2013 IEEE international conference on cybernetics (CYBCO) (pp. 186–190).

  • dos Santos Coelho, L., de Andrade Bernert, D. L., & Mariani, V. C. (2011). A chaotic firefly algorithm applied to reliability-redundancy optimization. In 2011 IEEE congress of evolutionary computation (CEC) (pp. 517–521).

  • Elsayed, S. M., Sarker, R. A., & Essam, D. L. (2011). Multi-operator based evolutionary algorithms for solving constrained optimization problems. Computers and Operations Research, 38(12), 1877–1896.

    Article  Google Scholar 

  • Elsayed, S. M., Sarker, R. A., & Mezura-Montes, E. (2014). Self-adaptive mix of particle swarm methodologies for constrained optimization. Information Sciences, 277(Supplement C), 216–233.

    Article  Google Scholar 

  • Eskandar, H., Sadollah, A., Bahreininejad, A., & Hamdi, M. (2012). Water cycle algorithm—A novel metaheuristic optimization method for solving constrained engineering optimization problems. Computers and Structures, 110, 151–166.

    Article  Google Scholar 

  • Esmin, A. A. A., Coelho, R. A., & Matwin, S. (2015). A review on particle swarm optimization algorithm and its variants to clustering high-dimensional data. Artificial Intelligence Review, 44(1), 23–45.

    Article  Google Scholar 

  • Fister, I., Fister, I, Jr., Yang, X. S., & Brest, J. (2013). A comprehensive review of firefly algorithms. Swarm and Evolutionary Computation, 13, 34–46.

    Article  Google Scholar 

  • Fister, I., Perc, M., Kamal, S. M., & Fister, I. (2015). A review of chaos-based firefly algorithms: Perspectives and research challenges. Applied Mathematics and Computation, 252, 155–165.

    Article  Google Scholar 

  • Fister, I, Jr., Yang, X. S., Fister, I., Brest, J., & Fister, D. (2013). A brief review of nature-inspired algorithms for optimization. Elektrotehniski Vestnik, 80(3), 116–122.

    Google Scholar 

  • Gandomi, A. H., Kashani, A. R., & Mousavi, M. (2015). Boundary constraint handling affection on slope stability analysis (pp. 341–358). Cham: Springer.

    Google Scholar 

  • Gandomi, A. H., & Yang, X. S. (2012). Evolutionary boundary constraint handling scheme. Neural Computing and Applications, 21(6), 1449–1462.

    Article  Google Scholar 

  • Gandomi, A. H., Yang, X. S., & Alavi, A. H. (2011). Mixed variable structural optimization using firefly algorithm. Computers and Structures, 89, 2325–2336.

    Article  Google Scholar 

  • Gandomi, A. H., Yang, X. S., & Alavi, A. H. (2013b). Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Engineering with Computers, 29(1), 17–35.

    Article  Google Scholar 

  • Gandomi, A. H., Yang, X. S., Alavi, A. H., & Talatahari, S. (2013c). Bat algorithm for constrained optimization tasks. Neural Computing and Applications, 22(6), 1239–1255.

    Article  Google Scholar 

  • Gandomi, A. H., Yang, X. S., Talatahari, S., & Alavi, A. (2013a). Firefly algorithm with chaos. Communications in Nonlinear Science and Numerical Simulation, 18(1), 89–98.

    Article  Google Scholar 

  • Gong, W., Cai, Z., & Liang, D. (2014). Engineering optimization by means of an improved constrained differential evolution. Computer Methods in Applied Mechanics and Engineering, 268, 884–904.

    Article  Google Scholar 

  • Guedria, N. B. (2016). Improved accelerated PSO algorithm for mechanical engineering optimization problems. Applied Soft Computing, 40, 455–467.

    Article  Google Scholar 

  • Guo Cx, Hu, Js, Ye B., & Yj, Cao. (2004). Swarm intelligence for mixed-variable design optimization. Journal of Zhejiang University-SCIENCE A, 5(7), 851–860.

    Article  Google Scholar 

  • Hamida, S. B., & Schoenauer, M. (2002). ASCHEA: New results using adaptive segregational constraint handling. In Proceedings of the congress on evolutionary computation 2002 (CEC’2002) (Vol. 1, pp. 884–889).

  • He, X., & Yang, X. S. (2013). Firefly algorithm: Recent advances and applications. International Journal of Swarm Intelligence, 1(1), 36–50.

    Article  Google Scholar 

  • Holland, J. H. (1992). Genetic algorithms. Scientific American, 267(1), 66–73.

    Article  Google Scholar 

  • Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department.

  • Karaboga, D., & Akay, B. (2011). A modified artificial bee colony (ABC) algorithm for constrained optimization problems. Applied Soft Computing Journal, 11(3), 3021–3031.

    Article  Google Scholar 

  • Karaboga, D., Gorkemli, B., Ozturk, C., & Karaboga, N. (2014). A comprehensive survey: Artificial bee colony (ABC) algorithm and applications. Artificial Intelligence Review, 42(1), 21–57.

    Article  Google Scholar 

  • Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In Proceedings of the 1995 IEEE international conference on neural networks (pp. 1942–1948). Piscataway, NJ: IEEE Service Center.

  • Kukkonen, S., & Lampinen, J. (2006). Constrained real-parameter optimization with generalized differential evolution. In IEEE congress on evolutionary computation 2006 (CEC 2006) (pp. 207–214).

  • Liang, J., Runarsson, T., Mezura-Montes, E., Clerc, M., Suganthan, P., Coello, C., et al. (2006). Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization. Technical report. Singapore: Nanyang Technological University.

  • Liu, B., Wang, L., Jin, Y. H., Tang, F., & Huang, D. X. (2005). Improved particle swarm optimization combined with chaos. Chaos, Solitons and Fractals, 25(5), 1261–1271.

    Article  Google Scholar 

  • Liu, H., Cai, Z., & Wang, Y. (2010). Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Applied Soft Computing, 10(2), 629–640.

    Article  Google Scholar 

  • Mallipeddi, R., & Suganthan, P. N. (2010). Ensemble of constraint handling techniques. IEEE Transactions on Evolutionary Computation, 14(4), 561–579.

    Article  Google Scholar 

  • Mezura-Montes, E., & Cetina-Domínguez, O. (2012). Empirical analysis of a modified artificial bee colony for constrained numerical optimization. Applied Mathematics and Computation, 218(22), 10943–10973.

    Article  Google Scholar 

  • Mezura-Montes, E., & Coello, C. A. C. (2005). Useful infeasible solutions in engineering optimization with evolutionary algorithms (pp. 652–662). Berlin: Springer.

    Google Scholar 

  • Mezura-Montes, E., & Coello, C. A. C. (2011). Constraint-handling in nature-inspired numerical optimization: Past, present and future. Swarm and Evolutionary Computation, 1(4), 173–194.

    Article  Google Scholar 

  • Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp swarm algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software,. https://doi.org/10.1016/j.advengsoft.2017.07.002.

    Article  Google Scholar 

  • Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.

    Article  Google Scholar 

  • Mohamed, A. W. (2017). A novel differential evolution algorithm for solving constrained engineering optimization problems. Journal of Intelligent Manufacturing,. https://doi.org/10.1007/s10845-017-1294-6.

    Article  Google Scholar 

  • Mohamed, A. W., & Sabry, H. Z. (2012). Constrained optimization based on modified differential evolution algorithm. Information Sciences, 194, 171–208.

    Article  Google Scholar 

  • Rao, R. V., Savsani, V., & Vakharia, D. (2011). Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Computer-Aided Design, 43(3), 303–315.

    Article  Google Scholar 

  • Rao, R. V., & Waghmare, G. (2017). A new optimization algorithm for solving complex constrained design optimization problems. Engineering Optimization, 49(1), 60–83.

    Article  Google Scholar 

  • Sadollah, A., Bahreininejad, A., Eskandar, H., & Hamdi, M. (2013). Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems. Applied Soft Computing, 13(5), 2592–2612.

    Article  Google Scholar 

  • Savsani, P., & Savsani, V. (2016). Passing vehicle search (PVS): A novel metaheuristic algorithm. Applied Mathematical Modelling, 40(56), 3951–3978.

    Article  Google Scholar 

  • Storn, R., & Price, K. (1997). Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341–359.

    Article  Google Scholar 

  • Su, S., Su, Y., & Xu, M. (2014). Comparisons of firefly algorithm with chaotic maps. Computer Modeling and New Technologies, 18(12C), 326–332.

    Google Scholar 

  • Varaee, H., & Ghasemi, M. R. (2017). Engineering optimization based on ideal gas molecular movement algorithm. Engineering with Computers, 33(1), 71–93.

    Article  Google Scholar 

  • Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82.

    Article  Google Scholar 

  • Yang, X. S. (2008). Nature-inspired metaheuristic algorithms. Luniver Press.

  • Yang, X. S. (2009). Firefly algorithms for multimodal optimization (pp. 169–178). Berlin: Springer.

    Google Scholar 

  • Yang, X. S. (2010a). Firey algorithm, stochastic test functions and design optimisation. International Journal of Bio-Inspired Computation, 2(2), 78–84.

    Article  Google Scholar 

  • Yang, X. S. (2010b). Nature-inspired metaheuristic algorithms (2nd ed.). New York: Luniver Press.

    Google Scholar 

  • Yang, X. S. (2010c). A new metaheuristic bat-inspired algorithm (pp. 65–74). Berlin: Springer.

    Google Scholar 

  • Yang, X. S. (2011). Metaheuristic optimization: Algorithm analysis and open problems (pp. 21–32). Berlin: Springer.

    Google Scholar 

  • Yang, X. S. (2013). Multiobjective firefly algorithm for continuous optimization. Engineering with Computers, 29(2), 175–184.

    Article  Google Scholar 

  • Yang, X. S. (2014). Cuckoo search and firefly algorithm: Overview and analysis (pp. 1–26). Cham: Springer.

    Book  Google Scholar 

  • Yang, X. S., & Deb, S. (2009). Cuckoo search via Lévy flights. In Proceedings of the world congress on nature and biologically inspired computing (pp. 210–214).

  • Yang, X. S., Deb, S., Loomes, M., & Karamanoglu, M. (2013a). A framework for self-tuning optimization algorithm. Neural Computing and Applications, 23(7), 2051–2057.

    Article  Google Scholar 

  • Yang, X. S., Huyck, C., Karamanoglu, M., & Khan, N. (2013b). True global optimality of the pressure vessel design problem: A benchmark for bio-inspired optimisation algorithms. International Journal of Bio-Inspired Computation, 5(6), 329–335.

    Article  Google Scholar 

  • Yi, J., Li, X., Chu, C. H., & Gao, L. (2016a). Parallel chaotic local search enhanced harmony search algorithm for engineering design optimization. Journal of Intelligent Manufacturing,. https://doi.org/10.1007/s10845-016-1255-5.

    Article  Google Scholar 

  • Yi, W., Zhou, Y., Gao, L., Li, X., & Zhang, C. (2016b). Engineering design optimization using an improved local search based epsilon differential evolution algorithm. Journal of Intelligent Manufacturing,. https://doi.org/10.1007/s10845-016-1199-9.

    Article  Google Scholar 

  • Yildiz, A. R. (2013). Comparison of evolutionary-based optimization algorithms for structural design optimization. Engineering Applications of Artificial Intelligence, 26(1), 327–333.

    Article  Google Scholar 

  • Yildiz, B. S., & Yildiz, A. R. (2017). Moth-flame optimization algorithm to determine optimal machining parameters in manufacturing processes. Materials Testing, 59(5), 425–429.

    Article  Google Scholar 

  • Ylmaz, S., & Küçüksille, E. U. (2015). A new modification approach on bat algorithm for solving optimization problems. Applied Soft Computing, 28(Supplement C), 259–275.

    Article  Google Scholar 

  • Yu, K., Wang, X., & Wang, Z. (2016). An improved teaching–learning-based optimization algorithm for numerical and engineering optimization problems. Journal of Intelligent Manufacturing, 27(4), 831–843.

    Article  Google Scholar 

  • Zhang, L., Liu, L., Yang, X. S., & Dai, Y. (2016). A novel hybrid firefly algorithm for global optimization. PLoS ONE, 11(9), 1–17. https://doi.org/10.1371/journal.pone.0163230.

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by Ministry of Education and Science of Republic of Serbia, Grant No. 174013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivona Brajević.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brajević, I., Ignjatović, J. An upgraded firefly algorithm with feasibility-based rules for constrained engineering optimization problems. J Intell Manuf 30, 2545–2574 (2019). https://doi.org/10.1007/s10845-018-1419-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-018-1419-6

Keywords

Navigation