Advertisement

Defect identification in friction stir welding using continuous wavelet transform

  • Shilpi Kumari
  • Rahul Jain
  • Ujjwal Kumar
  • Inderjeet Yadav
  • Nitin Ranjan
  • Kanchan Kumari
  • Ram Kumar Kesharwani
  • Sachin Kumar
  • Srikanta Pal
  • Surjya K. Pal
  • Debashish Chakravarty
Article

Abstract

The manuscript reports on detection of defect that arises during friction stir welding using continuous wavelet transform (CWT) on force signal. The vertical force during welding undergoes sudden change due to presence of defects. These localized defects are detected accurately with the help of continuous wavelet transform scalogram (CWT coefficients’ gray scale image). Statistical feature of variance is used on scale of 1 of transformed signal to localize the defects. The experiments of welding are conducted on the work piece of AA 1100 with varying tool rotational speed (1000, 2000, 3000 rpm) and transverse velocity (50, 75 and 125 mm/min). The manuscript also presents the comparison of results obtained using discrete wavelet transform and CWT of force signals and shows better localization and determination of degree of defect are possible through CWT analysis.

Keywords

Continuous wavelet transform Friction stir welding Force signal Weld defects 

References

  1. Bhat, N. N., Kumari, K., Dutta, S., Pal, S. K., & Pal, S. (2015). Friction stir weld classification by applying wavelet analysis and support vector machine on weld surface images. Journal of Manufacturing Processes, 20, 274–281. doi: 10.1016/j.jmapro.2015.07.002.CrossRefGoogle Scholar
  2. Chen, C., Kovacevic, R., & Jandgric, D. (2003). Wavelet transform analysis of acoustic emission in monitoring friction stir welding of 6061 aluminum. International Journal of Machine Tools and Manufacture, 43(13), 1383–1390. doi: 10.1016/S0890-6955(03)00130-5.CrossRefGoogle Scholar
  3. Chen, H. B., Yan, K., Lin, T., Chen, S.-B., Jiang, C.-Y., & Zhao, Y. (2006). The investigation of typical welding defects for 5456 aluminum alloy friction stir welds. Materials Science and Engineering: A, 433(1–2), 64–69. doi: 10.1016/j.msea.2006.06.056.CrossRefGoogle Scholar
  4. Cui, L., Yang, X., Xie, Y., Hou, X., & Song, Y. (2013). Process parameter influence on defects and tensile properties of friction stir welded T-joints on AA6061-T4 sheets. Materials and Design, 51, 161–174. doi: 10.1016/j.matdes.2013.04.013.CrossRefGoogle Scholar
  5. Cui, L., Yang, X., Zhou, G., Xu, X., & Shen, Z. (2012). Characteristics of defects and tensile behaviors on friction stir welded AA6061-T4 T-joints. Materials Science and Engineering: A, 543, 58–68. doi: 10.1016/j.msea.2012.02.045.CrossRefGoogle Scholar
  6. Jain, R., Kumari, K., Kesharwani, R. K., Kumar, S., Pal, S. K., & Singh, S. B., et al. (2015). Friction stir welding: Scope and recent developement. In Mordern manufacturing engineering edited by J. Paulo Davim, (Springer) (pp. 179–228). doi: 10.1007/978-3-319-20152-8.
  7. Jain, R., Pal, S. K., & Singh, S. B. (2016). A study on the variation of forces and temperature in a friction stir welding process: A finite element approach. Journal of Manufacturing Processes, 23, 278–286. doi: 10.1016/j.jmapro.2016.04.008.CrossRefGoogle Scholar
  8. Jata, K. V., & Semiatin, S. L. (2000). Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys. Scripta Materialia, 43(8), 743–749. doi: 10.1016/S1359-6462(00)00480-2.CrossRefGoogle Scholar
  9. Kilby, J., & Hosseini, H. G. (2006). Extracting effective features of SEMG using continuous wavelet transform. In Annual international conference of the IEEE engineering in medicine and biology—proceedings (pp. 1704–1707. doi: 10.1109/IEMBS.2006.260064.
  10. Kim, Y. G., Fujii, H., Tsumura, T., Komazaki, T., & Nakata, K. (2006). Three defect types in friction stir welding of aluminum die casting alloy. Materials Science and Engineering: A, 415(1–2), 250–254. doi: 10.1016/j.msea.2005.09.072.CrossRefGoogle Scholar
  11. Kumar, U., Yadav, I., Kumari, S., Kumari, K., Ranjan, N., Kesharwani, R. K., et al. (2015). Defect identification in friction stir welding using discrete wavelet analysis. Advances in Engineering Software, 85, 43–50. doi: 10.1016/j.advengsoft.2015.02.001.CrossRefGoogle Scholar
  12. Leonard, A. J., & Lockyer, S. A. (2003). Flaws in friction stir welds. In 4th international symposium on friction stir welding, USA (pp. 14–16).Google Scholar
  13. Li, B., Shen, Y., & Hu, W. (2011). The study on defects in aluminum 2219–T6 thick butt friction stir welds with the application of multiple non-destructive testing methods. Materials and Design, 32(4), 2073–2084. doi: 10.1016/j.matdes.2010.11.054.
  14. Mandache, C., Levesque, D., Dubourg, L., & Gougeon, P. (2012). Non-destructive detection of lack of penetration defects in friction stir welds. Science and Technology of Welding and Joining, 17(4), 295–303. doi: 10.1179/1362171812Y.0000000007.CrossRefGoogle Scholar
  15. Qian, J., Li, J., Sun, F., Xiong, J., Zhang, F., & Lin, X. (2013). An analytical model to optimize rotation speed and travel speed of friction stir welding for defect-free joints. Scripta Materialia, 68(3–4), 175–178. doi: 10.1016/j.scriptamat.2012.10.008.CrossRefGoogle Scholar
  16. Ranjan, R., Khan, A. R., Parikh, C., Jain, R., Mahto, R. P., Pal, S., et al. (2016). Classification and identification of surface defects in friction stir welding: An image processing approach. Journal of Manufacturing Processes, 22, 237–253. doi: 10.1016/j.jmapro.2016.03.009.CrossRefGoogle Scholar
  17. Rosado, L. S., Santos, T. G., Piedade, M., Ramos, P. M., & Vilaça, P. (2010). Advanced technique for non-destructive testing of friction stir welding of metals. Measurement, 43(8), 1021–1030. doi: 10.1016/j.measurement.2010.02.006.CrossRefGoogle Scholar
  18. Saeid, T., Abdollah-zadeh, A., & Sazgari, B. (2010). Weldability and mechanical properties of dissimilar aluminum-copper lap joints made by friction stir welding. Journal of Alloys and Compounds, 490(1–2), 652–655. doi: 10.1016/j.jallcom.2009.10.127.CrossRefGoogle Scholar
  19. Saravanan, T., Das, H., Arunmuthu, K., Philip, J., Rao, B. P. C., Jayakumar, T., et al. (2014). Evaluation of dissimilar friction stir lap joints using digital X-ray radiography. Science and Technology of Welding and Joining, 19(2), 125–132. doi: 10.1179/1362171813Y.0000000172.CrossRefGoogle Scholar
  20. Soundararajan, V., Atharifar, H., & Kovacevic, R. (2006). Monitoring and processing the acoustic emission signals from the friction-stir-welding process. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 220(10), 1673–1685. doi: 10.1243/09544054JEM586.CrossRefGoogle Scholar
  21. Stournaras, A., Stavropoulos, P., Salonitis, K., & Chryssolouris, G. (2009). An investigation of quality in CO2 laser cutting of aluminum. CIRP Journal of Manufacturing Science and Technology, 2(1), 61–69. doi: 10.1016/j.cirpj.2009.08.005.CrossRefGoogle Scholar
  22. Thomas, W., Nicholas, E., Needham, J., Murch, M., Temple, S. P., & Dawes, C. (1991). International patent application no. PCT/GB92/02203 and GB patent application number 9125978.9.Google Scholar
  23. Yu, R. Q., Hu, B., & Zou, H. C. (2012). Magnetic detection technology for tiny flaws in FSW of aluminium alloy. Science and Technology of Welding and Joining, 17(7), 534–538. doi: 10.1179/1362171812Y.0000000043.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Shilpi Kumari
    • 1
  • Rahul Jain
    • 2
  • Ujjwal Kumar
    • 3
  • Inderjeet Yadav
    • 1
  • Nitin Ranjan
    • 1
  • Kanchan Kumari
    • 2
  • Ram Kumar Kesharwani
    • 2
  • Sachin Kumar
    • 4
  • Srikanta Pal
    • 3
  • Surjya K. Pal
    • 2
  • Debashish Chakravarty
    • 5
  1. 1.Department of Electrical and Electronics EngineeringBirla Institute of Technology, MesraRanchiIndia
  2. 2.Department of Mechanical EngineeringIndian Institute of TechnologyKharagpurIndia
  3. 3.Department of Electronics and Communication EngineeringBirla Institute of Technology, MesraRanchiIndia
  4. 4.Former Scholar of Department of Mechanical EngineeringIndian Institute of TechnologyKharagpurIndia
  5. 5.Department of Mining EngineeringIndian Institute of TechnologyKharagpurIndia

Personalised recommendations