Skip to main content
Log in

A feasible incentive contract between a manufacturer and his fairness-sensitive retailer engaged in strategic marketing efforts

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

This paper considers a feasible incentive contract between a manufacturer and a fairness-sensitive retailer. The manufacturer (he) dominates the supply chain and determines his wholesale price, while the retailer (she) focuses on marketing and retailing. Thus, the retailer’s decision concerns her marketing efforts and retail price. The market demand is linked directly to the retailer’s marketing efforts and retail price. Therefore, we find that the retailer’s fairness preference leads her to engage in high-level marketing efforts, but causes the manufacturer to set a low wholesale price. A strategic decision-making approach that the manufacturer can employ is to consider the retailer’s fairness sensitivity. We also find that the retailer’s concern for fairness influences the manufacturer’s decisions strongly and affects his expected profit negatively. The manufacturer dominates the supply chain, thereby motivating him to design a feasible incentive contract to maximize his expected profit. Thus, a fairness-embedded profit-sharing contract applied with a Nash bargaining process is proposed to maximize the manufacturer’s expected profit. Both mathematical derivations and numerical studies show that the incentive contract leads to Pareto improvement in the utilities of the manufacturer and the retailer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Binmore, K., Rubinstein, A., & Wolinsky, A. (1986). The Nash bargaining solution in economic modelling. The RAND Journal of Economics, 17(2), 176–188.

    Article  Google Scholar 

  • Cachon, G., & Lariviere, M. (2005). Supply chain coordination with revenue-sharing contracts: Strengths and limitations. Management Science, 51(1), 30–44.

    Article  Google Scholar 

  • Caliskan-Demirag, O., Chen, Y. F., & Li, J. (2010). Channel coordination under fairness concerns and nonlinear demand. European Journal of Operational Research, 207(3), 1321–1326.

    Article  Google Scholar 

  • Chen, L. T., & Wei, C. C. (2012). Multi-period channel coordination in vendor-managed inventory for deteriorating goods. International Journal of Production Research, 50(16), 4396–4413.

    Article  Google Scholar 

  • Cui, T. H., Raju, J. S., & Zhang, Z. J. (2007). Fairness and channel coordination. Management Science, 53(8), 1303–1314.

    Article  Google Scholar 

  • Dean, P. R., Xue, D., & Tu, Y. L. (2009). Prediction of manufacturing resource requirements from customer demands in mass-customisation production. International Journal of Production Research, 47(5), 1245–1268.

    Article  Google Scholar 

  • Du, S., Nie, T., Chu, C., & Yu, Y. (2014). Newsvendor model for a dyadic supply chain with Nash bargaining fairness concerns. International Journal of Production Research, 52(17), 5070–5085.

    Article  Google Scholar 

  • Fehr, E., & Schmidt, K. M. (1999). A theory of fairness, competition, and cooperation. Quarterly Journal of Economics, 114(3), 817–868.

    Article  Google Scholar 

  • Gou, Q., Zhang, J., Liang, L., Huang, Z., & Ashley, A. (2014). Horizontal cooperative programmes and cooperative advertising. International Journal of Production Research, 52(3), 691–712.

    Article  Google Scholar 

  • Griffith, D. A., Harvey, M. G., & Lusch, R. F. (2006). Social exchange in supply chain relationships: The resulting benefits of procedural and distributive justice. Journal of Operations Management, 24(2), 85–98.

    Article  Google Scholar 

  • Ho, T. H., Su, X., & Wu, Y. (2014). Distributional and peer-induced fairness in supply chain contract design. Production and Operations Management, 23(2), 161–175.

    Article  Google Scholar 

  • Ho, T. H., & Zhang, J. (2008). Designing pricing contracts for boundedly rational customers: Does the framing of the fixed fee matter? Management Science, 54(4), 686–700.

    Article  Google Scholar 

  • Jambulingam, T., Kathuria, R., & Nevin, J. R. (2009). How fairness garners loyalty in the pharmaceutical supply chain: Role of trust in the wholesaler–pharmacy relationship. International Journal of Pharmaceutical and Healthcare Marketing, 3(4), 305–322.

    Article  Google Scholar 

  • Katok, E., Olsen, T., & Pavlov, V. (2014). Wholesale pricing under mild and privately known concerns for fairness. Production and Operations Management, 23(2), 285–302.

    Article  Google Scholar 

  • Katok, E., & Pavlov, V. (2013). Fairness in supply chain contracts: A laboratory study. Journal of Operations Management, 31(3), 129–137.

    Article  Google Scholar 

  • Krishnan, H., Kapuscinski, R., & Butz, D. A. (2004). Coordinating contracts for decentralized supply chains with retailer promotional effort. Management Science, 50(1), 48–63.

    Article  Google Scholar 

  • Kumar, N., Scheer, L. K., & Steenkamp, J. B. (1995). The effects of supplier fairness on vulnerable resellers. Journal of Marketing Research, 32(1), 54–58.

    Article  Google Scholar 

  • Kunter, M. (2012). Coordination via cost and revenue sharing in manufacturer–retailer channels. European Journal of Operational Research, 216(2), 477–486.

    Article  Google Scholar 

  • Leng, M., & Parlar, M. (2009). Lead-time reduction in a two-level supply chain: Non-cooperative equilibria vs. coordination with a profit-sharing contract. International Journal of Production Economics, 118, 521–544.

    Article  Google Scholar 

  • Li, S. X., Huang, Z. M., Zhu, J., & Chau, P. Y. K. (2002). Cooperative advertising, game theory and manufacturer–retailer supply chains. Omega, 30(5), 347–357.

    Article  Google Scholar 

  • Loch, C. H., & Wu, Y. (2008). Social preferences and supply chain performance: An experimental study. Management Science, 54(11), 1835–1849.

    Article  Google Scholar 

  • Ma, P., Wang, H., & Shang, J. (2013). Contract design for two-stage supply chain coordination: Integrating manufacturer-quality and retailer-marketing efforts. International Journal of Production Economics, 146(2), 745–755.

    Article  Google Scholar 

  • Mukhopadhyay, S. K., Zhu, X., & Yue, X. (2008). Optimal contract design for mixed channels under information asymmetry. Production and Operations Management, 17(6), 641–650.

    Article  Google Scholar 

  • Nash, J. (1953). Two-person cooperative games. Econometrica: Journal of the Econometric Society, 21(1), 128–140.

  • Padel, S., & Foster, C. (2005). Exploring the gap between attitudes and behaviour: Understanding why consumers buy or do not buy organic food. British Food Journal, 107, 606–625.

    Article  Google Scholar 

  • Palsule-Desai, O. D. (2013). Supply chain coordination using revenue-dependent revenue-sharing contracts. Omega, 41(4), 780–796.

    Article  Google Scholar 

  • Pavlov, V., & Katok, E. (2012). Fairness and coordination failures in supply chain contracts. Working paper. University of Texas at Dallas.

  • Plambeck, E. L., & Taylor, T. A. (2007). Implications of renegotiation for optimal contract flexibility and investment. Management Science, 53(12), 1872–1886.

    Article  Google Scholar 

  • Pun, H., & Heese, H. S. (2015). Controlling a supplier’s subcontracting decisions through contractual enforcement or economic incentives. International Journal of Production Research, 53(1), 127–140.

    Article  Google Scholar 

  • Radner, R., & Schotter, A. (1989). The sealed-bid mechanism: An experimental study. Journal of Economic Theory, 48(1), 179–220.

    Article  Google Scholar 

  • Scheer, L. K., Kumar, N., & Steenkamp, J. B. E. M. (2003). Reactions to perceived inequity in U.S. and Dutch inter-organizational relationships. Academy of Management Journal, 46(3), 303–316.

    Google Scholar 

  • Su, X. (2008). Bounded rationality in newsvendor models. Manufacturing & Service Operations Management, 10(4), 566–589.

    Article  Google Scholar 

  • Taylor, T. A. (2002). Supply chain coordination under channel rebates with sales effort effects. Management Science, 48(8), 992–1007.

    Article  Google Scholar 

  • Touati, C., Altman, E., & Galtier, J. (2006). Generalized Nash bargaining solution for bandwidth allocation. Computer Networks, 50(17), 3242–3263.

    Article  Google Scholar 

  • Tsao, Y. C., & Sheen, G. J. (2008). Dynamic pricing, promotion and replenishment policies for a deteriorating item under permissible delay in payments. Computers & Operations Research, 35(11), 3562–3580.

    Article  Google Scholar 

  • Wu, X., & Niederhoff, J. A. (2014). Fairness in selling to the newsvendor. Production and Operations Management, 23(11), 2002–2022.

    Article  Google Scholar 

  • Xiao, T., Yang, D., & Shen, H. (2011). Coordinating a supply chain with a quality assurance policy via a profit-sharing contract. International Journal of Production Research, 49(1), 99–120.

    Article  Google Scholar 

  • Yang, J., Xie, J., Deng, X., & Xiong, H. (2013). Cooperative advertising in a distribution channel with fairness concerns. European Journal of Operational Research, 227(2), 401–407.

    Article  Google Scholar 

  • Yu, Y., Chu, F., & Chen, H. (2009). A Stackelberg game and its improvement in a VMI system with a manufacturing vendor. European Journal of Operational Research, 192(3), 929–948.

    Article  Google Scholar 

  • Zhang, X., Prajapati, M., & Peden, E. (2011). A stochastic production planning model under uncertain seasonal demand and market growth. International Journal of Production Research, 49(7), 1957–1975.

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support extended by the National Natural Science Foundation of China (Nos. 71371086 and 71501128), the Central University Basic Research Funds of China (No. JUSRP51416B), the Shandong Social Science Planning Fund Program (No.14CGLJ07) and Cross-synthesis of Science & Humanities of Shanghai Jiao Tong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghua Han.

Appendix

Appendix

Proof of Theorem 1

By taking the first derivative of \(u_r^f \) with respect to p and \(\theta \), we have

$$\begin{aligned} \frac{\partial u_r^f }{\partial p}= & {} \left( {1+\tau } \right) \left( {-2bp+a+\lambda \theta +bw} \right) +\tau \gamma b\left( {w-c} \right) \nonumber \\\end{aligned}$$
(15)
$$\begin{aligned} \frac{\partial u_r^f }{\partial \theta }= & {} \left( {1+\tau } \right) \left[ {\lambda \left( {p-w} \right) -\xi \theta } \right] -\tau \gamma \lambda \left( {w-c} \right) \end{aligned}$$
(16)

Therefore, the corresponding Hessian matrix is

$$\begin{aligned} H\left( {p,\theta } \right)= & {} \left[ \begin{array}{c@{\quad }c} {\frac{\partial ^{2}u_r^f }{\partial p^{2}}}&{} {\frac{\partial ^{2}u_r^f }{\partial p\partial \theta }} \\ {\frac{\partial ^{2}u_r^f }{\partial \theta \partial p}}&{} {\frac{\partial ^{2}u_r^f }{\partial \theta ^{2}}} \\ \end{array} \right] \\= & {} \left[ \begin{array}{c@{\quad }c} {-2b(1+\tau )}&{} {\lambda (1+\tau )} \\ {\lambda (1+\tau )}&{} {-\xi (1+\tau )} \\ \end{array} \right] \end{aligned}$$

The Hessian matrix of \(u_r^f \) is a negative definite for all p and \(\theta \) because \(H\left( {p,\theta } \right) \) satisfies the conditions that \(-2b(1+\tau )<0\) and \(\left( {2b\xi -\lambda ^{2}} \right) (1+\tau )^{2}>0\). Let Eqs. (15) and (16) equal zero. We obtain

$$\begin{aligned} p^{f{*}}= & {} \frac{\left( {a\xi +bw\xi -\lambda ^{2}w} \right) \left( {1+\tau } \right) +\tau \gamma \left( {w-c} \right) \left( {b\xi -\lambda ^{2}} \right) }{\left( {2b\xi -\lambda ^{2}} \right) \left( {1+\tau } \right) }\nonumber \\\end{aligned}$$
(17)
$$\begin{aligned} \theta ^{f{*}}= & {} \frac{\lambda \left( {a-bw} \right) \left( {1+\tau } \right) -\lambda \tau \gamma b\left( {w-c} \right) }{\left( {2b\xi -\lambda ^{2}} \right) \left( {1+\tau } \right) } \end{aligned}$$
(18)

Introducing Eqs. (17) and (18) into \(u_m^f \) and taking the first derivative of \(u_m^f \) with respect to w, we obtain

$$\begin{aligned}&\frac{\partial u_m^f }{\partial w}\nonumber \\&\quad =\frac{-\,2b^{2}\left[ {\xi \left( {1+\tau } \right) +\xi \tau \gamma } \right] w+b\xi \left( {a+bc} \right) \left( {1+\tau } \right) +2\xi b^{2}\tau \gamma c}{\left( {2b\xi -\lambda ^{2}} \right) \left( {1+\tau } \right) }\nonumber \\ \end{aligned}$$
(19)

Let Eq. (19) equal zero. We then have

$$\begin{aligned} w^{f{*}}=\frac{\left( {a+bc} \right) \left( {1+\tau } \right) +2\tau \gamma bc}{2b\left[ {\left( {1+\tau } \right) +\tau \gamma } \right] } \end{aligned}$$
(20)

\(\left. {\frac{\partial ^{2}u_m^f }{\partial w^{2}}} \right| _{w=w^{f{*}}} <0.\) Therefore, we conclude that \(w^{f{*}}\) is the unique optimal solution for this problem. Introducing Eq. (20) into Eqs. (17) and (18), we obtain

$$\begin{aligned} p^{f{*}}=\frac{3ab\xi +b^{2}c\xi -a\lambda ^{2}-bc\lambda ^{2}}{2b\left( {2b\xi -\lambda ^{2}} \right) }, \quad \theta ^{f{*}}=\frac{\lambda \left( {a-bc} \right) }{2\left( {2b\xi -\lambda ^{2}} \right) } \end{aligned}$$

We introduce \(w^{f{*}}\), \(p^{f{*}}\), and \(\theta ^{f{*}}\) into \(u_r^f \) and \(u_m^f \), and obtain the retailer’s and the manufacturer’s equilibrium utilities, respectively.

$$\begin{aligned} u_r^{f{*}}= & {} \frac{\xi \left( {a-bc} \right) ^{2}\left( {1+\tau } \right) }{8\left( {2b\xi -\lambda ^{2}} \right) }, \quad \\ u_m^{f{*}}= & {} \frac{\xi \left( {a-bc} \right) ^{2}\left( {1+\tau } \right) }{4\left( {2b\xi -\lambda ^{2}} \right) \left[ {\left( {1+\tau } \right) +\tau \gamma } \right] } \end{aligned}$$

Thus, the utility of the entire supply chain is

$$\begin{aligned} u_{sc}^{f{*}} =\frac{\xi \left( {a-bc} \right) ^{2}\left( {1+\tau } \right) \left( {3+\tau +\tau \gamma } \right) }{8\left( {2b\xi -\lambda ^{2}} \right) \left[ {\left( {1+\tau } \right) +\tau \gamma } \right] } \end{aligned}$$

\(\square \)

Proof of Corollary 1

On the basis of the functions of \(w^{f{*}}\) with \(w^{n{*}}\), we obtain \(w^{f{*}}-w^{n{*}}=\frac{\left( {bc-a} \right) \tau \gamma }{2b\left[ {\left( {1+\tau } \right) +\tau \gamma } \right] }\). The marketing effort level \(\theta \) is a non-negative value. Therefore, we have \(a>bc\). Thus,\(w^{f{*}}-w^{n{*}}<0\) and \(\frac{\partial w^{f{*}}}{\partial \tau }=-\frac{\left( {a-bc} \right) \gamma }{2b\left( {1+\tau +\tau \gamma } \right) ^{2}}<0\). \(\square \)

Proof of Corollary 2

By observing the optimal marketing effort level and retail price in two target patterns, we have \(\theta ^{f{*}}=\theta ^{n{*}}\) and \(p^{f{*}}=p^{n{*}}\). Thus, we find that the retail prices and market effort level hold. \(\square \)

Proof of Corollary 3

On the basis of the solutions of \(u_r^{f{*}} \) and \(u_r^{n{*}} \), we find that \(u_r^{f{*}} -u_{_r }^{n{*}} >0\) and

$$\begin{aligned} \frac{\partial u_r^{f{*}} }{\partial \tau }=\frac{\xi \left( {a-bc} \right) ^{2}}{8\left( {2b\xi -\lambda ^{2}} \right) }>0. \end{aligned}$$

\(\square \)

Proof of Corollary 4

On the basis of the solutions of \(u_m^{f{*}} \) and \(u_{_m }^{n{*}} \), we obtain \(u_m^{f{*}} -u_{_m }^{n{*}} =-\frac{\xi \left( {a-bc} \right) ^{2}\tau \gamma }{4\left( {2b\xi -\lambda ^{2}} \right) \left[ {\left( {1+\tau } \right) +\tau \gamma } \right] }<0\) and \(\frac{\partial u_m^{f{*}} }{\partial \tau }<0\), respectively. \(\square \)

Proof of Corollary 5

From the solutions of \(u_{_{sc} }^{n{*}} \) and \(u_{sc}^{f{*}} \), we obtain \(u_{sc}^{f*} -u_{_{sc} }^{n*} =\frac{\xi \left( {a-bc} \right) ^{2}}{8\left( {2b\xi -\lambda ^{2}} \right) }\left[ {\frac{\tau ^{2}\left( {1+\gamma } \right) +\tau \left( {1-2\gamma } \right) }{1+\tau +\tau \gamma }} \right] \). For mathematical convenience, we set \(f\left( \tau \right) =\tau ^{2}\left( {1+\gamma } \right) +\tau \left( {1-2\gamma } \right) \). We find \(f\left( \tau \right) \) is the quadratic function with an unfairness aversion coefficient \(\tau \). When \(f\left( \tau \right) =0\), we obtain \(\tau _1 =0\) and \(\tau _2 =\frac{2\gamma -1}{1+\gamma }\).

Furthermore, we introduce \(w^{f{*}}\), \(p^{f{*}}\), \(\theta ^{f{*}}\) into \(\pi _r \) and \(\pi _m \), and obtain the retailer’s and the manufacturer’s optimal profit, respectively.

$$\begin{aligned} \pi _r^{f*}= & {} \frac{\xi \left( {a-bc} \right) ^{2}\left( {1+\tau +3\tau \gamma } \right) }{8\left( {2b\xi -\lambda ^{2}} \right) \left[ {\left( {1+\tau } \right) +\tau \gamma } \right] }\end{aligned}$$
(21)
$$\begin{aligned} \pi _m^{f*}= & {} \frac{\xi \left( {a-bc} \right) ^{2}\left( {1+\tau } \right) }{4\left( {2b\xi -\lambda ^{2}} \right) \left[ {\left( {1+\tau } \right) +\tau \gamma } \right] } \end{aligned}$$
(22)

In this paper, we assume \(0<\pi _r <\gamma \pi _m \). Hence, introducing Eqs. (21) and (22) into \(0<\pi _r <\gamma \pi _m \), we obtain \(\tau \in \left( {0,\frac{2\gamma -1}{1+\gamma }} \right) \). By a feature of the quadratic function \(f\left( \tau \right) \), we obtain \(u_{sc}^{f{*}} -u_{_{sc} }^{n{*}} <0\). \(\square \)

Proof of Corollary 6

Taking the first derivative of \(u_r^o \) with respect to p and \(\theta \), we have

$$\begin{aligned} \theta ^{o{*}}= & {} \frac{\lambda \left[ {\left( {a-bw} \right) \left[ {\left( {1+\tau } \right) -t\left( {1+\tau +\tau \gamma } \right) } \right] -b\tau \gamma \left( {w-c} \right) } \right] }{\left( {2b\xi -\lambda ^{2}} \right) \left[ {\left( {1+\tau } \right) -t\left( {1+\tau +\tau \gamma } \right) } \right] },\\ p^{o{*}}= & {} \frac{\left( {a\xi -\lambda ^{2}w} \right) \left[ {\left( {1+\tau } \right) -t\left( {1+\tau +\tau \gamma } \right) } \right] +bw\xi (1-t)\left( {1+\tau +\tau \gamma } \right) -\left[ {bc\xi +\lambda ^{2}\left( {w-c} \right) } \right] \tau \gamma }{\left( {2b\xi -\lambda ^{2}} \right) \left[ {\left( {1+\tau } \right) -t\left( {1+\tau +\tau \gamma } \right) } \right] } \end{aligned}$$

The Hessian matrix of \(u_r^o \) is written as

$$\begin{aligned}&H\left( {p,\theta } \right) =\left[ {{\begin{array}{c@{\quad }c} {\frac{\partial ^{2}u_r^o }{\partial p^{2}}}&{} {\frac{\partial ^{2}u_r^o }{\partial p\partial \theta }} \\ {\frac{\partial ^{2}u_r^o }{\partial \theta \partial p}}&{} {\frac{\partial ^{2}u_r^o }{\partial \theta ^{2}}} \\ \end{array} }} \right] \nonumber \\&\quad =\left[ {{\begin{array}{c@{\quad }c} {2bt\left( {1+\tau +\tau \gamma } \right) -2b\left( {1+\tau } \right) }&{} {\lambda \left( {1+\tau } \right) -\lambda t\left( {1+\tau +\tau \gamma } \right) } \\ {\lambda \left( {1+\tau } \right) -\lambda t\left( {1+\tau +\tau \gamma } \right) }&{} {\xi t\left( {1+\tau +\tau \gamma } \right) -\xi \left( {1+\tau } \right) } \\ \end{array} }} \right] \end{aligned}$$

If the level of retailer emphasis on the manufacturer’s profit is not too high, i.e., \(0<\gamma <\frac{\left( {1-t} \right) \left( {1+\tau } \right) }{t\tau }\), then we can conclude that \(2bt\left( {1+\tau +\tau \gamma } \right) -2b\left( {1+\tau } \right) <0\) and \(\left( {2b\xi -\lambda ^{2}} \right) \left[ {t\left( {1+\tau +\tau \gamma } \right) -\left( {1+\tau } \right) } \right] ^{2}>0\). Thus, the Hessian matrix of \(u_r^o \) is a negative definite for all p and \(\theta \). \(\square \)

Proof of Corollary 7

According to the condition \(0\le t\le 1\), we need to prove \(\left[ {\underline{t},\overline{t} } \right] \subset \left[ {0,1} \right] \) to illustrate the effectiveness of the proposed incentive contract, which means that we need to ensure that the following three inequalities are always satisfied:

$$\begin{aligned} \underline{t}>0, \quad \overline{t} \le 1, \quad \underline{t}<\overline{t} \end{aligned}$$

First, we can easily prove \(\frac{2\left( {1+\tau } \right) k^{2}}{1+\tau +\tau \gamma }>0\). Thus, we have \(\underline{t}>0\). In addition, because of \(8k<8k+1\), we obtain \(\sqrt{\left( {2k+k^{2}} \right) \left( {2k+k^{2}+1} \right) }-\left( {2k+k^{2}} \right) \le \frac{1}{2}\). Thus, we have \(\overline{t} \le 1\). Similarly, we obtain \(3k^{3}+4k^{2}<2+k\) given that \(0\le k\le \frac{1}{2}\). Therefore, we further have \(k^{2}<\sqrt{\left( {2k+k^{2}} \right) \left( {2k+k^{2}+1} \right) }-\left( {2k+k^{2}} \right) \). On the basis of the above analysis, we obtain \(\underline{t}<\overline{t} \). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, X., Gong, L. & Han, G. A feasible incentive contract between a manufacturer and his fairness-sensitive retailer engaged in strategic marketing efforts. J Intell Manuf 30, 193–206 (2019). https://doi.org/10.1007/s10845-016-1239-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-016-1239-5

Keywords

Navigation