Skip to main content
Log in

On-line fault diagnosis of FMS based on flows analysis

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Any flexible manufacturing system (FMS) may face fault which may disrupt the production and cause delays. Thus, the identification of the source of failure is very important to intervene rapidly. This paper aims to develop an indirect and incremental diagnostic approach to identify the root cause of the observed delay in the context of a single fault occurrence. In this study the observation is done only at the output of the system to measure the output dates of each part and to detect the eventual delay. For this purpose, a mathematical model is developed to model the proposed diagnostic approach of FMS under cyclic scheduling. This cyclic approach provides intermediary reference points to detect any discrepancy with regard the predictive scheduling. These intermediary reference points correspond to the end of each cycle defined by the scheduling. To solve this problem, the constraint programming technique is used. Finally, the performance of the proposed approach is evaluated with respect to the literature. The major merit of this study is to prove the capacity to diagnose efficiently the progressive faults of a plant without the necessity to add sensors dedicated to its monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Basile, F., Chiacchio, P., & Tommasi, G. D. (2012). On k diagnosability of petri nets via integer linear programming. Automatica, 48(9), 2047–2058.

    Article  Google Scholar 

  • Belkahla, O., Yim, P., Korbaa, O., & Ghedira, K. (2007). A distributed transient interproduction scheduling for flexible manufacturing systems. Journal Européen des Systèmes Automatisés, 41(1), 101–123.

    Article  Google Scholar 

  • Benamar, A., Camus, H., & Korbaa, O. (2011). Mathematical model for cyclic scheduling with work-in-process minimization. Journal of Flexible Services and Manufacturing, 23(2), 111–136.

    Article  Google Scholar 

  • Bohm, S., Haar, S., Haddad, S., Hofman, P., & Schwoon, S. (2015). Active diagnosis with observable quiescence. In 54th IEEE Conference on Decision and Control (CDC’15).

  • Cassandras, C., & Lafortune, S. (2008). Introduction to discrete event systems (2nd ed.). Berlin: Springer.

    Book  Google Scholar 

  • Chiacchio, P., & Tommasi, G. (2009). An efficient approach for online diagnosis of discrete event systems. IEEE Transactions On Automatic Control, 54(4), 748–759.

    Article  Google Scholar 

  • Ding, S. (2008). Model-based fault diagnosis techniques: Design schemes, algorithms, and tools. Berlin: Springer.

    Google Scholar 

  • Fakhfakh, O., Korbaa, O., & Toguyeni, A. (2012). Double chaining approach for indirect monitoring of fms under cyclic scheduling. Information Control Problems in Manufacturing, 14(1), 151–157.

    Google Scholar 

  • Giua, A. (2015). Diagnosis and diagnosability of discrete event systems using petri nets. 9th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes SAFEPROCESS 2015 - Paris 48 (21), 179.

    Article  Google Scholar 

  • Grastien, A., & Anbulagan, A. (2010). Diagnostic de systèmes à evénéments discrets à base de cohérence par sat. Revue d’Intelligence Artificielle, 24(6), 757–786.

    Article  Google Scholar 

  • He, S., He, Z., & Wang, G. A. (2013). Online monitoring and fault identification of mean shifts in bivariate processes using decision tree learning techniques. Journal of Intelligent Manufacturing, 24(1), 25–34.

    Article  Google Scholar 

  • Herroelen, W., & Leus, R. (2004). Robust and reactive project scheduling: A review and classification of procedures. International Journal of Production Research, 42(8), 1599–1620.

    Article  Google Scholar 

  • Hsu, T., Korbaa, O., Dupas, R., & Goncalves, G. (2008). Cyclic scheduling for fms: Modelling and evolutionary solving approach. European Journal of Operational Research, 191(2), 464–484.

    Article  Google Scholar 

  • Isermann, R. (2011). Fault-diagnosis applications. Model-based condition monitoring: Actuators, drives, machinery, plants, sensors, and fault-tolerant systems (1st ed.). Berlin: Springer.

    Book  Google Scholar 

  • Korbaa, O., Camus, O., & Gentina, J. C. (2002). A new cyclic scheduling algorithm for flexible manufacturing systems. International Journal of Flexible Manufacturing Systems, 14(2), 173–187.

    Article  Google Scholar 

  • Ladiges, J., Haubeck, C., Fay, A., & Lamersdorf, W. (2015). Learning behaviour models of discrete event production systems from observing input/output signals. 15th IFAC Symposium on Information Control Problems in Manufacturing 48 (3), 1565–1572.

    Article  Google Scholar 

  • Lei, W., & Yuen, C. (2012). Formulation of a novel production line monitoring technique. International Journal of Production Research, 50(22), 6612–6623.

    Article  Google Scholar 

  • Ly, F., Toguyeni, A., & Craye, E. (2000). Indirect predictive monitoring in fms. Robotics and computer integrated manufacturing, 16(5), 321–338.

    Article  Google Scholar 

  • Mortada, M., Yacout, S., & Lakis, A. (2014). Fault diagnosis in power transformers using multi-class logical analysis of data. Journal of Intelligent Manufacturing, 25(6), 1429–1439.

    Article  Google Scholar 

  • Nabli, L. (2000). Surveillance prédictive conditionnelle prévisionnelle indirecte d’une unité de filature textile : Approche par la qualité. Ph.D. thesis, Ecole Centrale de Lille.

  • Pratap, S., Daultani, Y., Tiwari, M. K., & Mahanty, B. (2015). Rule based optimization for a bulk handling port operations.Journal of Intelligent Manufacturing. doi:10.1007/s10845-015-1108-7.

    Article  Google Scholar 

  • Roth, M., Schneider, S., Lesage, J., & Litz, L. (2012). Fault detection and isolation in manufacturing systems with an identified discrete event model. International Journal of Systems Science, 43(10), 1826–1841.

    Article  Google Scholar 

  • Ru, Y., & Hadjicostis, C. (2009). Fault diagnosis in discrete event systems modeled by partially observed petri nets. Discrete Event Dynamic Systems, 19(4), 551–575.

    Article  Google Scholar 

  • Sampath, M., Sengupta, R., Lafortune, S., & Sinnamoh, K. (1995). Diagnosability of discrete-event systems. IEEE Transactions on Automatic Control, 40(9), 1555–1575.

    Article  Google Scholar 

  • Sampath, M., Sengupta, R., Sinnamohideen, K., Lafortune, S., & Teneketzis, D. (1996). Failure diagnosis using discrete event systems. IEEE Transaction on Control System Technology, 4(2), 105–124.

    Article  Google Scholar 

  • Sayed-Mouchaweh, M., Philippot, A., & Carre-Menetrier, V. (2008). Decentralized diagnosis based on boolean discrete event models: Application on manufacturing systems. International Journal of Production Research, 46(19), 5469–5490.

    Article  Google Scholar 

  • Son, H., & Lee, S. (2007). Failure diagnosis and recovery based on des framework. Journal of Intelligent Manufacturing, 18(2), 249–260.

    Article  Google Scholar 

  • Staroswiecki, M., & Comtet-Varga, G. (2001). Analytic redundancy relations for fault detection and isolation in algebraic dynamic systems. Automatica, 37(5), 687–699.

    Article  Google Scholar 

  • Toguyeni, A., Craye, E., & Gentina, J. (1997). Time and reasoning for on-line diagnosis of failures in flexible manufacturing systems. In Proceedings of the 15th IMACS world congress on scientific computation, modeling, and applied mathematics 6, 709–714.

  • Toguyeni, A., & Korbaa, O. (2005). Indirect monitoring of the failures of a Flexible Manufacturing Systems under cyclic scheduling. Robotics and Computer-Integrated Manufacturing, 21(1), 1–10.

    Article  Google Scholar 

  • User’s Manual (2010). IBM ILOG Solver V6.8.

  • Valentin, C. (1994). Modeling and analysis methods for a class of hybrid dynamic systems. Symposium Automatisation des Processus Mixtes: Les Systèmes Dynamiques Hybrides pp. 221–226.

  • Verdiere, N., Jauberthie, C., & Trave-Massuyes, L. (2015). Functional diagnosability and detectability of nonlinear models based on analytical redundancy relations. Journal of Process Control, 35, 1–10.

    Article  Google Scholar 

  • Zaytoon, J., & Lafortune, S. (2013). Overview of fault diagnosis methods for discrete event systems. Annual Reviews in Control, 37(2), 308–320.

    Article  Google Scholar 

  • Zhang, K., Yuan, H., & Nie, P. (2015). A method for tool condition monitoring based on sensor fusion. Journal of Intelligent Manufacturing, 26(5), 1011–1026.

    Article  Google Scholar 

  • Zwingelstein, G. (1995). Diagnostic des défaillances - théorie et pratique pour les systèmes industriels. Traité des Nouvelles Technologies, série Diagnostic et Maintenance. Hermès Science, France.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olfa Fakhfakh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakhfakh, O., Toguyeni, A. & Korbaa, O. On-line fault diagnosis of FMS based on flows analysis. J Intell Manuf 29, 1891–1904 (2018). https://doi.org/10.1007/s10845-016-1219-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-016-1219-9

Keywords

Navigation