Skip to main content

Advertisement

Log in

An integrated approach to machine selection problem using fuzzy SMART-fuzzy weighted axiomatic design

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

In respond to new market requirements and competitive positioning of manufacturing companies selecting optimal machines that are consistent with manufacturing goals is of crucial importance. As it involves multiple conflicting criteria and inherent ambiguity and vagueness, election of a suitable machine can be regarded as a fuzzy multi-criteria decision making problem. In this study, for the first time in the literature, an integrated approach consisting of fuzzy simple multiattribute rating technique (SMART) approach and fuzzy weighted axiomatic design (FWAD) approach is proposed to determining the optimal continuous fluid bed tea dryer for a privately owned tea plant operating in Turkey. The weights of the evaluation criteria are calculated via fuzzy SMART and then FWAD is utilized to rank competing machine alternatives in terms of their overall performance. In the FWAD application phase, five experts have determined functional requirements (FRs) and have rated alternatives. Therefore, individual fuzzy opinions were required to be aggregated in order to set up a group consensus. A group decision analysis, referred to as the least squares distance method is used to aggregating the ratings of FRs and alternatives. It is concluded that the proposed hybrid methodology is a robust decision support tool for ranking machine alternatives under fuzzy environment and furthermore, it can be exploited for other fuzzy decision making problems, as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akgün, İ., Kandakoglu, A., & Özok, A. F. (2010). Fuzzy integrated vulnerability assessment model for critical facilities in combating the terrorism. Expert Systems with Application, 37, 3561–3573.

  • Arslan, M. C., Catay, B., & Budak, E. (2004). A decision support system for machine tool selection. Journal of Manufacturing Technology Management, 15, 101–109.

    Article  Google Scholar 

  • Atmani, A., & Lashkari, R. S. (1998). A model of machine tool selection and operation allocation in flexible manufacturing systems. International Journal of Production Research, 36, 1339–1349.

    Article  Google Scholar 

  • Babic, B. (1999). Axiomatic design of flexible manufacturing systems. International Journal of Production Research, 37(5), 1159–1173.

    Article  Google Scholar 

  • Barla, S. B. (2003). A case study of supplier selection for lean supply by using a mathematical model. Logistics Information Management, 16(6), 451–459.

    Article  Google Scholar 

  • Chen, S. J., & Hwang, C. L. (1992). Fuzzy multiple attribute decision-making method and applications. Berlin, Heidelberg: Springer.

    Book  Google Scholar 

  • Chen, Y., & Wang, T. C. (2009). Optimizing partners’ choice in IS/IT outsourcing projects: The strategic decision of fuzzy VIKOR. International Journal of Production Economics, 120, 233–242.

    Article  Google Scholar 

  • Chou, S. Y., & Chang, Y. H. (2008). A decision support system for supplier selection based on a strategy-aligned fuzzy SMART approach. Expert Systems with Applications, 34, 2241–2253.

    Article  Google Scholar 

  • Çelik, M., Cebi, S., Kahraman, C., & Er, I. D. (2009a). An integrated fuzzy QFD model proposal on routing of shipping investment decisions in crude oil tanker market. Expert Systems with Applications, 36(3), 6227–6235. 2.

  • Çelik, M., Cebi, S., Kahraman, C., & Er, I. D. (2009b). Application of axiomatic design and TOPSIS methodologies under fuzzy environment for proposing competitive strategies on Turkish container ports in maritime transportation network. Expert Systems with Applications, 36(3), 4541–4557.

  • Çelik, M., Kahraman, C., Cebi, S., & Er, I. D. (2009c). Fuzzy axiomatic design-based performance evaluation model for docking facilities in shipbuilding industry: The case of Turkish shipyards. Expert Systems with Applications, 36(1), 599–615.

  • Edwards, W. (1971). Social utilities. The Engineering Economist. In Summer Symposium Series, 6, 119–129.

    Google Scholar 

  • Edwards, W. (1977). How to multiattribute utility measurement for social decision-making. IEEE Transactions on Systems, Man, and Cybernetics, SMC-7, 326–340.

  • Edwards, W., & Barron, F. H. (1994). SMARTS and SMARTER: Improved simple methods for multiattribute utility measurement. Organizational Behavior and Human Decision Processes, 60(3), 306–325.

    Article  Google Scholar 

  • Eraslan, E., Akay, D., & Kurt, M. (2006). Usability ranking of intercity bus passenger seats using fuzzy axiomatic design theory. In Cooperative design, visualization, and engineering. Lecture notes in computer science, 4001, 141–148.

  • Gerrard, W. (1988). Selection procedures adopted by industry for introducing new machine tools. In Proceedings of 4th National Conference on Production Research, pp. 525–531.

  • Hampton, M. G. (1992). Production of black tea. In K. C. Willson & M. N. Clifford (Eds.), Tea (pp. 459–511). Netherlands: Springer.

    Chapter  Google Scholar 

  • Kahraman, C., & Cebi, S. (2009). A new multi-attribute decision making method: Hierarchical fuzzy axiomatic design. Expert Systems with Applications, 36(3), 4848–4861.

    Article  Google Scholar 

  • Kahraman, C., Kaya, İ., & Cebi, S. (2009). A comparative analysis for multiattribute selection among renewable energy alternatives using fuzzy axiomatic design and fuzzy analytic hierarchy process. Energy, 34, 1603–1616.

    Article  Google Scholar 

  • Karsak, E. E., & Kuzgunkaya, O. (2002). A fuzzy multiple objective programming approach for the selection of a flexible manufacturing system. International Journal of Production Economics, 79(2), 101–111.

    Article  Google Scholar 

  • Karsak, E. E. (2008). Using data envelopment analysis for evaluating flexible manufacturing systems in the presence of imprecise data. International Journal of Advanced Manufacturing Technology, 35, 867–874.

    Article  Google Scholar 

  • Kim, S. J., Suh, Nam P., & Kim, S. (1991). Design of software systems based on AD. Robotics and Computer-Integrated Manufacturing, 8(4), 243–255.

    Article  Google Scholar 

  • Kulak, O. (2005). A decision support system for fuzzy multi-attribute selection of material handling equipments. Expert Systems with Applications, 29(2), 310–319.

    Article  Google Scholar 

  • Kulak, O., Durmusoglu, M. B., & Kahraman, C. (2005). Fuzzy multi-attribute equipment selection based on information axiom. Journal of Materials Processing Technology, 169, 337–345.

    Article  Google Scholar 

  • Kulak, O., & Kahraman, C. (2005a). Multi-attribute comparison of advanced manufacturing systems using fuzzy vs. crisp axiomatic design approach. International Journal of Production Economics, 95, 415–424.

    Article  Google Scholar 

  • Kulak, O., & Kahraman, C. (2005b). Fuzzy multi-attribute selection among transportation companies using axiomatic design and analytic hierarchy process. Information Sciences, 170, 191–210.

    Article  Google Scholar 

  • Kwong, C. K., Ip, W. H., & Chan, J. W. K. (2002). Combining scoring method and fuzzy expert systems approach to supplier assessment: A case study. Integrated Manufacturing Systems, 13(7), 512–519.

    Article  Google Scholar 

  • Liu, S. T. (2008). A fuzzy DEA/AR approach to the selection of flexible manufacturing systems. Computers & Industrial Engineering, 54(1), 66–76.

    Article  Google Scholar 

  • Maldonado, A., García, J. L., Alvarado, A., & Balderrama, C. O. (2013). A hierarchical fuzzy axiomatic design methodology for ergonomic compatibility evaluation of advanced manufacturing technology. The International Journal of Advanced Manufacturing Technology, 66, 171–186.

    Article  Google Scholar 

  • Önüt, S., Kara, S. S., & Efendigil, t. (2008). A hybrid fuzzy MCDM approach to machine tool selection. Journal of Intelligent Manufacturing, 19, 443–453.

    Article  Google Scholar 

  • Panchariya, P. C., Popovic, D., & Sharma, A. L. (2002). Thin-layer modeling of black tea drying process. Journal of Food Engineering, 52, 349–357.

    Article  Google Scholar 

  • Samvedi, A., Jain, V., & Felix, T. S. C. (2012). An integrated approach for machine tool selection using fuzzy analytical hierarchy process and grey relational analysis. International Journal of Production Research, 50(12), 3211–3221.

    Article  Google Scholar 

  • Sarkis, J. (1997). Evaluating flexible manufacturing systems using data envelopment analysis. The Engineering Economist, 43(1), 25–46.

    Article  Google Scholar 

  • Seydel, J. (2006). Data envelopment analysis for decision support. Industrial Management & Data Systems, 106(1), 81–95.

    Article  Google Scholar 

  • Sivarao, P. B., El-Tayeb, N. S. M., & Vengkatesh, V. C. (2009a). Mamdani fuzzy inference system modeling to predict surface roughness in laser machining. International Journal of Intelligent Information Technology Application, 2(1), 12–18.

    Google Scholar 

  • Sivarao, P. B., El-Tayeb, N. S. M., & Vengkatesh, V. C. (2009b). GUI based ANFIS modeling: Back propagation optimization method for CO2 laser machining. International Journal of Intelligent Information Technology Application, 2(4), 191–198.

    Google Scholar 

  • Suh, N. P. (1990). The principles of design. New York: Oxford University Press.

    Google Scholar 

  • Suh, N. P. (1995). Design and operation of large systems. Annals of CIRP, 14(3), 203–213.

    Google Scholar 

  • Suh, N. P. (1997). Design of systems. Annals of CIRP, 46(1), 75–80.

    Article  Google Scholar 

  • Tabucanon, M. T., Batanov, D. N., & Verma, D. K. (1994). Intelligent decision support system (DSS) for the selection process of alternative machines for flexible manufacturing systems (FMS). Computers in Industry, 25, 131–143.

  • Taha, Z., & Rostam, S. (2011). Axiomatic design principles in analyzing the ergonomics design parameter of a virtual environment. The International Journal of Advanced Manufacturing Technology, 57, 719–733

  • Wang, T. Y., & Parkan, C. (2006). Two new approaches for assessing the weights of fuzzy opinions in group decison analysis. Information Sciences, 176, 3538–3555.

    Article  Google Scholar 

  • Wang, T. Y., Shaw, C. F., & Chen, Y. L. (2000). Machine selection in flexible manufacturing cell: A fuzzy multiple attribute decision making approach. International Journal of Production Research, 38, 2079–2097.

    Article  Google Scholar 

  • Yao, J. S., & Chiang, J. (2003). Inventory without backorder with fuzzy total cost and fuzzy storing cost defuzzified by centroid and signed distance. European Journal of Operational Research, 148, 401–409.

    Article  Google Scholar 

  • Yetton, P., & Botter, P. (1983). The relationships among group size, member ability, social decision schemes, and performance. Organizational Behavior and Human Performance, pp. 145–159.

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.

    Article  Google Scholar 

  • Zavadskas, E. K., Turskis, Z., & Kildienė, S. (2014). State of art surveys of overviews on MCDM/MADM methods. Technological and Economic Development of Economy, 20, 165–179.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Süleyman Çakır.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çakır, S. An integrated approach to machine selection problem using fuzzy SMART-fuzzy weighted axiomatic design. J Intell Manuf 29, 1433–1445 (2018). https://doi.org/10.1007/s10845-015-1189-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-015-1189-3

Keywords

Navigation