Advertisement

Journal of Intelligent Manufacturing

, Volume 28, Issue 2, pp 437–454 | Cite as

New dynamic heuristic for the optimization of opportunities to use new and remanufactured spare part in stochastic degradation context

  • Hamza Boudhar
  • Mohammed Dahane
  • Nidhal Rezg
Article

Abstract

This research investigates the case of a machine subject to a stochastic degradation. A condition-based replacement policy is adopted to keep the system running. The replacements are carried out with spare parts of a given quality determined by their degradation level. The replacement spare parts are either new or used: the used ones are the parts recovered from the machine at the time of previous replacements. Before the replacement, a remanufacturing process can be applied on the recovered part to improve its quality, by reducing its degradation level. The purpose of this paper is to propose an optimal maintenance policy, by determining dynamically (i.e. at each moment of decision making): the decision thresholds, inspection dates and spare parts qualities to be installed in the machine. Two components approach is proposed to achieve these objectives, the first component is executed offline and the second component is run online. Numerical examples are presented to illustrate the efficiency of the proposed approach.

Keywords

Remanufacturing Reverse logistic condition-based maintenance Spare part Stochastic degradation Heuristic approach Simulation 

References

  1. Barata, J., Soares, C. G., Marseguerra, M., & Zio, E. (2002). Simulation modelling of repairable multi-component deteriorating systems for “on condition” maintenance optimisation. Reliability Engineering & System Safety, 76(3), 255–264. doi: 10.1016/S0951-8320(02)00017-0
  2. Biswas, W. K., Duong, V., Frey, P., & Islam, M. N. (2013). A comparison of repaired, remanufactured and new compressors used in Western Australian small- and medium-sized enterprises in terms of global warming. Journal of Remanufacturing, 3(1), 4. doi: 10.1186/2210-4690-3-4
  3. Boudhar, H., Dahane, M., & Rezg, N. (2013a). Order/remanufacturing policy of spare part with recovery option for stochastic deteriorating system. In 2013 IEEE 18th conference on emerging technologies factory automation (ETFA) (pp. 1–7). Presented at the 2013 IEEE 18th Conference on Emerging Technologies Factory Automation (ETFA). doi: 10.1109/ETFA.2013.6647988
  4. Boudhar, H., Dahane, M., & Rezg, N. (2013b). Joint optimisation of spare parts demand and remanufacturing policy under condition-based maintenance for stochastic deteriorating manufacturing System (pp. 414–419). doi: 10.3182/20130522-3-BR-4036.00097
  5. Boudhar, H., Dahane, M., & Rezg, N. (2013c). A new inspection heuristic for a condition-based maintenance policy in a spare part returns context. In 2013 IEEE international conference on systems, man, and cybernetics (SMC) (pp. 1300–1305). Presented at the 2013 IEEE international conference on systems, man, and cybernetics (SMC). doi: 10.1109/SMC.2013.225
  6. Boudhar, H., Dahane, M., & Rezg, N. (2013d). Spare part returns in stochastic deteriorating manufacturing system under a condition-based maintenance policy: simulation-based genetic algorithm approach (pp. 1399–1404). doi: 10.3182/20130619-3-RU-3018.00484
  7. Castanier, B., Bérenguer, C., & Grall, A. (2003). A sequential condition-based repair/replacement policy with non-periodic inspections for a system subject to continuous wear. Applied Stochastic Models in Business and Industry, 19(4), 327–347. doi: 10.1002/asmb.493
  8. Chari, N., Diallo, C., & Venkatadri, U. (2013). Optimal unlimited free-replacement warranty strategy using reconditioned products. International Journal of Performability Engineering, 9(2), 191. Accessed December 18, 2013.Google Scholar
  9. Chari, N., Diallo, C., Venkatadri, U., & Aït-Kadi, D. (2013). Manufacturing strategy using new and reconditioned rotable spare parts. Presented at the 11th global conference on sustainable manufacturing. http://www.gcsm.eu/Papers/71/7.2_165.pdf. Accessed December 18, 2013.
  10. Ferrer, G. (2001). On the widget remanufacturing operation. European Journal of Operational Research, 135(2), 373–393. doi: 10.1016/S0377-2217(00)00318-0
  11. Ferrer, G., & Ayres, R. U. (2000). The impact of remanufacturing in the economy. Ecological Economics, 32(3), 413–429. doi: 10.1016/S0921-8009(99)00110-X
  12. Fleischmann, M., Beullens, P., Bloemhof-Ruwaard, J. M., & Van Wassenhove, L. N. (2001). The impact of product recovery on logistics network design. Production and Operations Management, 10(2), 156–173. doi: 10.1111/j.1937-956.2001.tb00076.x.
  13. Golmakani, H. R., & Moakedi, H. (2013). Optimal nonperiodic inspection scheme for a multicomponent repairable system with failure interaction using A* search algorithm. The International Journal of Advanced Manufacturing Technology, 1–12. doi: 10.1007/s00170-012-4569-2
  14. Grall, A., Bérenguer, C., & Dieulle, L. (2002). A condition-based maintenance policy for stochastically deteriorating systems. Reliability Engineering & System Safety, 76(2), 167–180. doi: 10.1016/S0951-8320(01)00148-X
  15. Huang, C.-C., Liang, W.-Y., Tseng, T.-L., & Chen, P.-H. (2014). The rough set based approach to generic routing problems: case of reverse logistics supplier selection. Journal of Intelligent Manufacturing, 1–15. doi: 10.1007/s10845-014-0913-8
  16. Inderfurth, K., de Kok, A. G., & Flapper, S. D. P. (2001). Product recovery in stochastic remanufacturing systems with multiple reuse options. European Journal of Operational Research, 133(1), 130–152. doi: 10.1016/S0377-2217(00)00188-0.
  17. Inderfurth, K., & Kleber, R. (2013). An advanced heuristic for multiple-option spare parts procurement after end-of-production. Production and Operations Management, 22(1), 54–70. doi: 10.1111/j.1937-5956.2012.01358.x
  18. Kenné, J.-P., Dejax, P., & Gharbi, A. (2012). Production planning of a hybrid manufacturing-remanufacturing system under uncertainty within a closed-loop supply chain. International Journal of Production Economics, 135(1), 81–93. doi: 10.1016/j.ijpe.2010.10.026.CrossRefGoogle Scholar
  19. Khatab, A. (2013). Hybrid hazard rate model for imperfect preventive maintenance of systems subject to random deterioration. Journal of Intelligent Manufacturing, 1–8. doi: 10.1007/s10845-013-0819-x
  20. Liao, H., Elsayed, E. A., & Chan, L.-Y. (2006). Maintenance of continuously monitored degrading systems. European Journal of Operational Research, 175(2), 821–835. doi: 10.1016/j.ejor.2005.05.017
  21. Lu, Z., & Bostel, N. (2007). A facility location model for logistics systems including reverse flows: The case of remanufacturing activities. Computers & Operations Research, 34(2), 299–323. doi: 10.1016/j.cor.2005.03.002
  22. Mutha, A., & Pokharel, S. (2009). Strategic network design for reverse logistics and remanufacturing using new and old product modules. Computers & Industrial Engineering, 56(1), 334–346. doi: 10.1016/j.cie.2008.06.006.
  23. Naeem, M. A., Dias, D. J., Tibrewal, R., Chang, P. C., & Tiwari, M. K. (2013b). Production planning optimization for manufacturing and remanufacturing system in stochastic environment. Journal of Intelligent Manufacturing, 24(4), 717–728. doi: 10.1007/s10845-011-0619-0
  24. Ponchet, A., Fouladirad, M., & Grall, A. (2010). Assessment of a maintenance model for a multi-deteriorating mode system. Reliability Engineering & System Safety, 95(11), 1244–1254. doi: 10.1016/j.ress.2010.06.021
  25. Saassouh, B., Dieulle, L., & Grall, A. (2007). Online maintenance policy for a deteriorating system with random change of mode. Reliability Engineering & System Safety, 92(12), 1677–1685. doi: 10.1016/j.ress.2006.10.017
  26. Sahnoun, M., Bettayeb, B., Bassetto, S., & Tollenaere, M. (2014). Simulation-based optimization of sampling plans to reduce inspections while mastering the risk exposure in semiconductor manufacturing. Journal of Intelligent Manufacturing, 1–15. doi: 10.1007/s10845-014-0956-x
  27. Shokohyar, S., Mansour, S., & Karimi, B. (2014). A model for integrating services and product EOL management in sustainable product service system (S-PSS). Journal of Intelligent Manufacturing, 25(3), 427–440. doi: 10.1007/s10845-012-0694-x
  28. Srivastava, S. K. (2007). Green supply-chain management: A state-of-the-art literature review. International Journal of Management Reviews, 9(1), 53–80. doi: 10.1111/j.1468-2370.2007.00202.x
  29. Su, J. C. P., Lin, Y. C., & Lee, V. (2012). Component commonality in closed-loop manufacturing systems. Journal of Intelligent Manufacturing, 23(6), 2383–2396. doi: 10.1007/s10845-010-0485-1
  30. Takahashi, K., Doi, Y., Hirotani, D., & Morikawa, K. (2014). An adaptive pull strategy for remanufacturing systems. Journal of Intelligent Manufacturing, 25(4), 629–645. doi: 10.1007/s10845-012-0710-1
  31. Van der Laan, E. A., & Teunter, R. H. (2006). Simple heuristics for push and pull remanufacturing policies. European Journal of Operational Research, 175(2), 1084–1102. doi: 10.1016/j.ejor.2005.06.030
  32. Wang, H. (2002). A survey of maintenance policies of deteriorating systems. European Journal of Operational Research, 139(3), 469–489. doi: 10.1016/S0377-2217(01)00197-7
  33. Wang, L., Chu, J., & Mao, W. (2008). A condition-based order-replacement policy for a single-unit system. Applied Mathematical Modelling, 32(11), 2274–2289. doi: 10.1016/j.apm.2007.07.016
  34. Wang, L., Chu, J., & Mao, W. (2009). A condition-based replacement and spare provisioning policy for deteriorating systems with uncertain deterioration to failure. European Journal of Operational Research, 194(1), 184–205. doi: 10.1016/j.ejor.2007.12.012.CrossRefGoogle Scholar
  35. Wang, J., Zhao, J., & Wang, X. (2011). Optimum policy in hybrid manufacturing/remanufacturing system. Computers & Industrial Engineering, 60(3), 411–419. doi: 10.1016/j.cie.2010.05.002
  36. Wen, D., Ershun, P., Ying, W., & Wenzhu, L. (2014). An economic production quantity model for a deteriorating system integrated with predictive maintenance strategy. Journal of Intelligent Manufacturing, 1–11. doi: 10.1007/s10845-014-0954-z
  37. Wu, C.-H. (2013). OEM product design in a price competition with remanufactured product. Omega, 41(2), 287–298. doi: 10.1016/j.omega.2012.04.004
  38. Yang, Z., Djurdjanovic, D., & Ni, J. (2008). Maintenance scheduling in manufacturing systems based on predicted machine degradation. Journal of Intelligent Manufacturing, 19(1), 87–98. doi: 10.1007/s10845-007-0047-3
  39. Zequeira, R. I., & Bérenguer, C. (2005). Optimal inspection policies with predictive and preventive maintenance. Engineering Optimization, 37(5), 541–550. doi: 10.1080/03052150500068311
  40. Zhao, X., Fouladirad, M., Bérenguer, C., & Bordes, L. (2010). Condition-based inspection/replacement policies for non-monotone deteriorating systems with environmental covariates. Reliability Engineering & System Safety, 95(8), 921–934. doi: 10.1016/j.ress.2010.04.005
  41. Zhao, Z., Wang, F-l, Jia, M.-X., & Wang, S. (2010). Predictive maintenance policy based on process data. Chemometrics and Intelligent Laboratory Systems, 103(2), 137–143. doi: 10.1016/j.chemolab.2010.06.009

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Laboratory of Industrial Engineering, Production and Maintenance (LGIPM)Université de LorraineMetzFrance
  2. 2.Laboratory of Industrial Engineering, Production and Maintenance (LGIPM)National School of Engineering (ENIM)MetzFrance

Personalised recommendations