Journal of Intelligent Manufacturing

, Volume 27, Issue 6, pp 1299–1308 | Cite as

Adaptive neuro fuzzy based hybrid force/position control for an industrial robot manipulator

  • Himanshu Chaudhary
  • Vikas Panwar
  • Rajendra Prasad
  • N. Sukavanam


In this paper an ANFIS-PD+I (AFSPD+I) based hybrid force/position controller has been proposed which works effectively with unspecified robot dynamics in the presence of external disturbances. A constraint is put to limit the movement of manipulator in XY Cartesian coordinates. The validity of the proposed controller has been tested using a 6-degree of freedom PUMA robot manipulator. The performance comparison have been done with the fuzzy proportional derivative plus integral, fuzzy proportional integral derivative and conventional proportional integral derivative controllers subjected to the same data set with proposed controller. The projected AFSPD+I controller adhered to the desired path closer and smoother than the other mentioned controllers.


Degree of freedom Force control  Fuzzy control  Position control PUMA robot manipulator 


  1. Alavandar, S., & Nigam, M. (2008). Fuzzy PD+ I control of a six DOF robot manipulator. Industrial Robot, Emerald. doi: 10.1108/01439910810854610.
  2. Armstrong, B., Khatib, O., & Burdick, J. (1986). The explicit dynamic model and inertial parameters of the PUMA 560 arm. In IEEE international conference on robotics and automation (vol. 3, pp. 510–518). doi: 10.1109/ROBOT.1986.1087644.
  3. Bezine, H., Derbel, N., & Alimi, A. M. (2002). Fuzzy control of robot manipulators: Some issues on design and rule base size reduction. Engineering Applications of Artificial Intelligence, 15(5), 401–416. doi: 10.1016/S0952-1976(02)00075-1.CrossRefGoogle Scholar
  4. Burlacu, A., Copot, C., & Lazar, C. (2013). Predictive control architecture for real-time image moments based servoing of robot manipulators. Journal of Intelligent Manufacturing, 1–10. doi: 10.1007/s10845-013-0743-0.
  5. Carvajal, J., Chen, G., & Ogmen, H. (2000). Fuzzy PID controller: Design, performance evaluation, and stability analysis. Information Sciences, 123(3–4), 249–270. doi: 10.1016/S0020-0255(99)00127-9.CrossRefGoogle Scholar
  6. Castillo, O., & Melin, P. (2003). Intelligent adaptive model-based control of robotic dynamic systems with a hybrid fuzzy-neural approach. Applied Soft Computing, 3(4), 363–378. doi: 10.1016/j.asoc.2003.05.007.CrossRefGoogle Scholar
  7. Daoud, S., Chehade, H., Yalaoui, F., & Amodeo, L. (2014). Efficient metaheuristics for pick and place robotic systems optimization. Journal of Intelligent Manufacturing, 25(1), 27–41. doi: 10.1007/s10845-012-0668-z.CrossRefGoogle Scholar
  8. Durmuş, B., Temurtaş, H., Yumuşak, N., & Temurtaş, F. (2009). A study on industrial robotic manipulator model using model based predictive controls. Journal of Intelligent Manufacturing, 20(2), 233–241. doi: 10.1007/s10845-008-0221-2.CrossRefGoogle Scholar
  9. Eldukhri, E. E., & Kamil, H. G. (2013). Optimisation of swing-up control parameters for a robot gymnast using the Bees Algorithm. Journal of Intelligent Manufacturing, 1–9. doi: 10.1007/s10845-013-0848-5.
  10. Fanaei, A., & Farrokhi, M. (2006). Robust adaptive neuro-fuzzy controller for hybrid position/force control of robot manipulators in contact with unknown environment. Journal of Intelligent and Fuzzy Systems, 17(2), 125–144.Google Scholar
  11. Feng-Yi, H., & Li-Chen, F. (2000). Intelligent robot deburring using adaptive fuzzy hybrid position/force control. IEEE Transactions on Robotics and Automation, 16(4), 325–335. doi: 10.1109/70.864223.CrossRefGoogle Scholar
  12. Fisher, W. D., & Mujtaba, M. S. (1992). Hybrid position/force control: A correct formulation. The International Journal of Robotics Research. doi: 10.1177/027836499201100403.
  13. Goldenberg, A. A., & Song, P. (1997). Principles for design of position and force controllers for robot manipulators. Robotics and Autonomous Systems. doi: 10.1016/S0921-8890(96)00079-6.
  14. Haklidir, M., & Tasdelen, I. (2009a). Modeling, simulation and fuzzy control of an anthropomorphic robot arm by using Dymola. Journal of Intelligent Manufacturing. doi: 10.1007/s10845-008-0227-9.
  15. Haklidir, M., & Tasdelen, I. (2009b). Modeling, simulation and fuzzy control of an anthropomorphic robot arm by using Dymola. Journal of Intelligent Manufacturing, 20(2), 177–186. doi: 10.1007/s10845-008-0227-9.CrossRefGoogle Scholar
  16. Jakovljevic, Z., Petrovic, P., Mikovic, V., & Pajic, M. (2014). Fuzzy inference mechanism for recognition of contact states in intelligent robotic assembly. Journal of Intelligent Manufacturing, 25(3), 571–587. doi: 10.1007/s10845-012-0706-x.CrossRefGoogle Scholar
  17. Jang, J. S. R. (1993). ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man and Cybernetics, 23(3), 665–685. doi: 10.1109/21.256541.CrossRefGoogle Scholar
  18. Jatta, F., Legnani, G., Visioli, A., & Ziliani, G. (2006). On the use of velocity feedback in hybrid force/velocity control of industrial manipulators. Control Engineering Practice, 14(9), 1045–1055. doi: 10.1016/j.conengprac.2005.06.005.CrossRefGoogle Scholar
  19. Kaganami, H. G., Ali, S. K., & Zou, B. (2011). Optimal approach for texture analysis and classification based on wavelet transform and neural network. Journal of Information Hiding and Multimedia Signal Processing, 2(1), 33–40.CrossRefGoogle Scholar
  20. Karayiannidis, Y., Rovithakis, G., & Doulgeri, Z. (2007). Force/position tracking for a robotic manipulator in compliant contact with a surface using neuro-adaptive control. Automatica, 43(7), 1281–1288. doi: 10.1016/j.automatica.2006.12.019.CrossRefGoogle Scholar
  21. Kazemian, H. B. (2001). Comparative study of a learning fuzzy PID controller and a self-tuning controller. ISA Transaction. doi: 10.1016/S0019-0578(00)00056-2.
  22. Khoury, G. M., Saad, M., Kanaan, H. Y., & Asmar, C. (2004). Fuzzy PID control of a five DOF robot arm. Journal of Intelligent and Robotic Systems, 40(3), 299–320. doi: 10.1023/B:JINT.0000038947.97195.22.CrossRefGoogle Scholar
  23. Kiguchi, K., & Fukuda, T. (2000). Position/force control of robot manipulators for geometrically unknown objects using fuzzy neural networks. IEEE Transactions on Industrial Electronics, 47(3), 641–649. doi: 10.1109/41.847905.CrossRefGoogle Scholar
  24. Kumar, N., Panwar, V., Sukavanam, N., Sharma, S., & Borm, J.-H. (2011). Neural network based hybrid force/position control for robot manipulators. International Journal of Precision Engineering and Manufacturing, 12(3), 419–426. doi: 10.1007/s12541-011-0054-3.CrossRefGoogle Scholar
  25. Kwan, C. M. (1995). Hybrid force/position control for manipulators with motor dynamics using a sliding-adaptive approach. IEEE Transactions on Automatic Control, 963–968. doi: 10.1109/9.384241.
  26. Latif, A. (2013). An adaptive digital image watermarking scheme using fuzzy logic and tabu search. Journal of Information Hiding and Multimedia Signal Processing, 4(4), 250–271.Google Scholar
  27. Lewis, F. L., Jagannathan, S., & Yesildirek, A. (1999). Neural network control of robot manipulators and non-linear systems (Ist ed.). UK: Taylor & Francis.Google Scholar
  28. Li, W. (1998). Design of a hybrid fuzzy logic proportional plus conventional integral-derivative controller. IEEE Transactions on Fuzzy Systems. doi: 10.1109/91.728430.
  29. Li, W., Chang, X. G., Farrell, J., & Wahl, F. M. (2001a). Design of an enhanced hybrid fuzzy P+ID controller for a mechanical manipulator. IEEE Transactions on Systems, Man, and Cybernetics, 31(6), 938–945. doi: 10.1109/3477.969497.
  30. Li, W., Chang, X., Wahl, F., & Farrell, J. (2001b). Tracking control of a manipulator under uncertainty by FUZZY P+ ID controller. Fuzzy Sets Systems. doi: 10.1016/S0165-0114(00)00019-1.
  31. Lin, J., Lin, C. C., & Lo, H. (2010). Hybrid position/force control of robot manipulators mounted on oscillatory bases using adaptive fuzzy control. In IEEE International Symposium on Intelligent Control. doi: 10.1109/ISIC.2010.5612905.
  32. Misir, D., Malki, H. A., & Guanrong, C. (1996). Design and analysis of a fuzzy proportional-integral-derivative controller. Fuzzy Sets Systems. doi: 10.1016/0165-0114(95)00149-2.
  33. Patel, R. V., Talebi, H. A., Jayender, J., & Shadpey, F. (2009). A robust position and force control strategy for 7-DOF redundant manipulators. IEEE/ASME Transactions on Mechatronics, 14(5), 575–589. doi: 10.1109/TMECH.2008.2009637.CrossRefGoogle Scholar
  34. Qingjiu, H., & Enomoto, R. (2009). Hybrid position, posture, force and moment control of robot manipulators. In IEEE international conference on robotics and biomimetics, 2008. doi: 10.1109/ROBIO.2009.4913213.
  35. Song, Z., Yi, J., Zhao, D., & Li, X. (2005). A computed torque controller for uncertain robotic manipulator systems: Fuzzy approach. Fuzzy Sets Systems. doi: 10.1016/j.fss.2005.03.007.
  36. Su, Y. X., Yang, S. X., Sun, D., & Duan, B. Y. (2004). A simple hybrid fuzzy PD controller. Mechatronics, 14(8), 877–890. doi: 10.1016/j.mechatronics.2004.05.002.CrossRefGoogle Scholar
  37. Sun, Y. L., & Er, M. J. (2004). Hybrid fuzzy control of robotics systems. IEEE Transactions on Fuzzy Systems, 12(6), 755–765. doi: 10.1109/TFUZZ.2004.836097.CrossRefGoogle Scholar
  38. Wang, D., Soh, Y. C., & Cheah, C. C. (1995). Robust motion and force control of constrained manipulators by learning. Automatica. doi: 10.1016/0005-1098(94)00066-R.
  39. Zhang, H., & Paul, R. P. (1985). Hybrid control of robot manipulators. In IEEE international conference on robotics and automation (vol. 2, pp. 1481–1484). doi: 10.1109/ROBOT.1985.1087304.

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Himanshu Chaudhary
    • 1
  • Vikas Panwar
    • 2
  • Rajendra Prasad
    • 1
  • N. Sukavanam
    • 3
  1. 1.Department of Electrical EngineeringIITRRoorkeeIndia
  2. 2.School of Vocational Studies and Applied SciencesGBUGreater NoidaIndia
  3. 3.Department of MathematicsIITRRoorkeeIndia

Personalised recommendations