Advertisement

Journal of Intelligent Manufacturing

, Volume 25, Issue 5, pp 1153–1166 | Cite as

Dynamic speed control of a machine tool with stochastic tool life: analysis and simulation

  • Bernard F. Lamond
  • Manbir S. Sodhi
  • Martin Noël
  • Ousman A. Assani
Article

Abstract

We discuss a tool management model for a flexible machine equipped with a tool magazine, variable cutting speed, and sensors to monitor tool wear, when tool life due to flank wear is stochastic. The objective is to adjust the cutting speed as a function of remaining distance, each time a tool change occurs, in order to minimize the expected processing time (sum of cutting and tool setup time). We address the computational aspects of finding optimal decision rules and we present numerical results suggesting that easily computed decision rules of a simple static model are near-optimal for our dynamic programming model. Dynamic adjustment is assessed with simulation experiments.

Keywords

Stochastic control Optimal control Dynamic programming Flexible manufacturing systems Machining Machine tools Random lifetime Stochastic modelling Renewal processes 

References

  1. Ait-Kadi, D., & Chelbi, A. (2010). Inspection strategy for availability improvement. Journal of Intelligent Manufacturing, 21, 231–235.CrossRefGoogle Scholar
  2. Assani, O. A. (2008). Méthodes d’optimisation stochastique sur la commande d’une machine-outil. Master’s thesis, Université Laval, Québec, Canada.Google Scholar
  3. Barlow, R. E., & Proschan, F. (1965). Mathematical theory of reliability. New York: Wiley.Google Scholar
  4. Berenguer, C., Chu, C., & Grall, A. (1997). Inspection and maintenance planning: An application of semi-Markov decision processes. Journal of Intelligent Manufacturing, 8, 467–476.CrossRefGoogle Scholar
  5. Cheng, C.-Y., Barton, D., & Prabhu, V. (2010). The servicisation of the cutting tool supply chain. International Journal of Production Research, 48, 1–19.CrossRefGoogle Scholar
  6. Dernardo, E. V. (1982). Dynamic programming: Models and applications. New York: Prentice-Hall.Google Scholar
  7. Snr, Dimla D. E. (2000). Sensor signals for tool-wear monitoring in metal cutting operations: A review of methods. International Journal of Machine Tools and Manufacture, 40, 1073–1098.CrossRefGoogle Scholar
  8. Fox, B. L. (1966). Discrete optimization via marginal analysis. Management Science, 13, 210–215.CrossRefGoogle Scholar
  9. Iakovou, E., Ip, C. M., & Koulamas, C. (1996). Optimal machining speed and tool inventory policies in machining economic systems. IIE Transactions, 28, 601–606.Google Scholar
  10. Kaspi, M., & Shabtay, D. (2003). Optimization of the machining economics problem for multistage transfer machine under failure, opportunistic and integrated replacement policies. International Journal of Production Research, 41, 2229–2247.CrossRefGoogle Scholar
  11. Kayan, R. K., & Akturk, M. S. (2005). A new bounding mechanism for the CNC machine scheduling problems with controllable processing times. European Journal of Operational Research, 167, 624–643.CrossRefGoogle Scholar
  12. Konak, A., Kulturel-Konak, S., & Azizoğlu, M. (2008). Minimizing the number of tool switching instants in flexible manufaturing systems. International Journal of Production Economics, 116, 298–307.CrossRefGoogle Scholar
  13. Kumar, A., Mohamed, Z., Motwani, J., & Youssef, M. (1997). A dynamic tool requirement planning model for flexible manufacturing systems. International Journal of Flexible Manufacturing Systems, 9, 307–342.CrossRefGoogle Scholar
  14. Lamond, B. F. (2010). Dynamic speed adjustment of a machine tool. In Proceedings of 5th international IEEE conference on intelligent systems (IEEE-IS’10), (pp. 248–253). University of Westminster, Harrow, London, UK.Google Scholar
  15. Lamond, B. F. (2007). A dynamic programming model of a machine tool in flexible manufacturing. In C. H. Skiadas (Ed.), Recent advances in stochastic modelling and data analysis (pp. 398–405). Singapore: World Scientific.CrossRefGoogle Scholar
  16. Lamond, B. F., & Sodhi, M. S. (2006). Minimizing the expected processing time on a flexible machine with random tool lives. IIE Transactions, 38, 1–11.CrossRefGoogle Scholar
  17. Lamond, B. F., Sodhi, M. S. (2005) Managing tool magazine capacity in flexible manufacturing system with random tool life: Convexity of optimal expected processing time. Working paper FSA-2005-05, Université Laval, Québec, Canada.Google Scholar
  18. Lamond, B. F., Sodhi, M. S., & Noël, M. (1998). Stochastic tool life models in flexible manufacturing. Proceedings CSME Forum, 3, 127–133.Google Scholar
  19. Lamond, B. F., & Sodhi, M. S. (1997). Using tool life models to minimize processing time on a flexible machine. IIE Transactions, 29, 611–621.Google Scholar
  20. Liu, P. H., Makis, V., & Jardine, A. K. S. (2001). Scheduling of the optimal tool replacement times in a flexible manufacturing. IIE Transactions, 33(6), 487–495. Google Scholar
  21. Noël, M., Lamond, B. F., & Sodhi, M. S. (2009). Simulation of random tool lives in metal cutting on a flexible machine. International Journal of Production Research, 47, 1835–1855.CrossRefGoogle Scholar
  22. Noël, M. (2006). Stochastic models for tool management on a flexible machine. Doctoral dissertation, Université Laval, Québec, Canada.Google Scholar
  23. Ramalingam, S., & Watson J. D. (1977). Tool-life distributions. Part 1: Single-injury tool-life model. Journal of Engineering for Industry-Transactions ASME, 99, 519–522.Google Scholar
  24. Ramalingam, S. (1977). Tool-life distributions. Part 2: Multiple-injury tool-life model. Journal of Engineering for Industry-Transactions ASME, 99, 523–530.Google Scholar
  25. Rosetto, S., & Zompi, A. (1981). A stochastic tool-life model. Journal of Engineering Industry-Transactions ASME, 103, 126–130.CrossRefGoogle Scholar
  26. Shabtay, D., & Kaspi, M. (2001). Optimization of the machining economics problem under the periodic control strategy. International Journal of Production Research, 39(17), 3889–3900.CrossRefGoogle Scholar
  27. Shabtay, D., & Kaspi, M. (2003). Optimization of the machining economics problem for a multistage transfer machine uder failure, opportunistic and integrated replacement strategies. International Journal of Production Research, 41(10), 2229–2247.CrossRefGoogle Scholar
  28. Shin, D., Park, J., Kim, N., & Wysk, R. A. (2009). A stochastic model for the optimal batch size in multi-step operations with process and product variability. International Journal of Production Research, 47, 3919–3936.CrossRefGoogle Scholar
  29. Sharma, V. S., Sharma, S. K., & Sharma, A. K. (2008). Cutting tool wear estimation for turning. Journal of Intelligent Manufacturing, 19, 99–108.CrossRefGoogle Scholar
  30. Silva, R. G., & Wilcox, S. J. (2008). Sensor based condition monitoring feature selection using a self-organizing map. In Proceedings of world congress on engineering 2008, volume II, (pp. 1247–1252). WCE 2008, London, U.K.Google Scholar
  31. Sodhi, M. S., Lamond, B. F., Gautier, A., & Noël, M. (2001). Heuristics for determining economic processing rates in a flexible manufacturing system. European Journal of Operational Research, 129, 105–115.CrossRefGoogle Scholar
  32. Song, D. P., Hicks, C. & Earl, C. F. (2003). Dynamic production planning and rescheduling for complex assemblies. Retrieved August 2004, from http://www-mmd.eng.cam.ac.uk/mcn/pdf_files/part6_10.pdf.
  33. Wager, A. B., & Barash, M. (1971). Study of the distribution of the life of HSS tools. Journal of Engineering Industry-Transactions ASME, 93, 1044–1050.CrossRefGoogle Scholar
  34. Wang, G., & Cui, Y. (2012). On-line tool wear monitoring based on auto associative neural network. Journal of Intelligent Manufacturing. doi: 10.1007/s10845-012-0636-7.
  35. Wang, K. S., Lin, W.-S., & Hsu, F.-S. (2001). A new approach for determining the reliability of a cutting tool. International Journal of Advanced Manufacturing Technology, 17, 705–709.CrossRefGoogle Scholar
  36. Wang, X., Wang, W., Huang, Y., Nguyen, N., & Krishnakumar, K. (2008). Design of neural network based estimator for tool wear modeling in hard turning. Journal of intelligent manufacturing, 19, 383–396.CrossRefGoogle Scholar
  37. Wiklund, H. (1998). Bayesian and regression approaches to on-line prediction of residual tool life. Quality and Reliability Engineering International, 14, 303–309.CrossRefGoogle Scholar
  38. Yang, Z., Djurdjanovic, D., & Ni, J. (2008). Maintenance scheduling in manufacturing systems based on machine degradation. Journal of Intelligent Manufacturing, 19, 87–98.CrossRefGoogle Scholar
  39. Zhou, C., & Wysk, R. A. (1992). Tool status recording and its use in probabilistic optimization. Journal of Engineering Industry-Transactions ASME, 114, 494–499.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Bernard F. Lamond
    • 1
  • Manbir S. Sodhi
    • 2
  • Martin Noël
    • 3
  • Ousman A. Assani
    • 4
  1. 1.Operations and Decision Systems DepartmentUniversité LavalQuébecCanada
  2. 2.Mechanical, Industrial and Systems Engineering DepartmentUniversity of Rhode IslandKingstonUSA
  3. 3.TÉLUQ, Université du QuébecQuébecCanada
  4. 4.Centre de services partagés du QuébecGouvernement du QuébecQuébecCanada

Personalised recommendations