Journal of Intelligent Manufacturing

, Volume 23, Issue 6, pp 2647–2665 | Cite as

A multi-agent knowledge model for SMEs mechatronic supply chains

  • Jihene Tounsi
  • Georges Habchi
  • Julien Boissière
  • Selma Azaiez


The main concern of this research work is to analyse and model supply chains (SCs) in the particular context of small and medium enterprises (SMEs) in the field of mechatronic. The study is based on the analysis of the organisational features, the actors’ behaviour, and performance considerations. The development of the model relies on an iterative framework that progressively integrates different aspects into the model. This framework is the ArchMDE process, which is based on MDE (Model Driven Engineering). A major feature of this work lies in its contribution to two different areas of research. The first contribution of the work is to propose a generic metamodel for SCs. Based on a literature review, an incremental framework is proposed for the modelling of SCs in terms of concepts, structure and relationships. The application of the framework to the studied context is described and its result is a domain-metamodel for SCs. The second contribution of this work lies in the formalisation of the dynamic behaviour of the concepts in the metamodel. This formalisation is based on the multi-agent approach. An agentification of the metamodel is thus drawn, thanks to the natural links between multiagent theory and SC reality. This step leads to an agentified-domain-metamodel which also includes the monitoring of the SC and synchronisation protocols. By adding relationships and dynamic behavior aspects, we obtain a metamodel of the domain that can be implemented, with its static and dynamic aspects. To validate this model, an industrial case study is detailed and has been instantiated and encoded in JAVA.


SME Supply chain Modeling Multiagent 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Mutawah K., Lee V., Cheung Y. (2009) A new multi-agent system framework for tacit knowledge management in manufacturing supply chains. Journal of Intelligent Manufacturing 20(5): 593–610CrossRefGoogle Scholar
  2. Azaiez, S. (2007). Approche Dirigée par les modèles pour le développement de systèmes multi-agents. Thèse de l’Université de Savoie, Spécialité Informatique. Annecy le vieux, France.Google Scholar
  3. Azaiez, S., Habchi, G., Huget, M. P., Pralus, M., & Tounsi, J. (2007). Multiagent oriented modelling and simulation for manufacturing systems control. In INDIN 2007, 5th IEEE international conference on industrial informatics (pp. 23–27). Vienna, Austria.Google Scholar
  4. Bagchi, S., Buckley, S., Ettl, M., & Lin, G. (1998). Experience using the IBM supply chain simulator. Winter Simulation Conference.Google Scholar
  5. Beamon B. M. (1998) Supply chain designs and analysis: Models and methods. International Journal of Production Economics 55: 281–294CrossRefGoogle Scholar
  6. Berger T., Sallez Y., Valti B., Gibaud A., Trentesaux A. (2010) Semi-heterarchical allocation and routing processes in FMS control: A stigmergic approach. Journal of Intelligent & Robotics Systems 58(1): 17–45CrossRefGoogle Scholar
  7. Bratman M. E, Israel D. J., Pollack M. (1998) Plans and resource-bounded practical reasoning. Computational Intelligence 4: 349–355CrossRefGoogle Scholar
  8. Brooks R. A. (1991) Intelligence without representation. Artificial Intelligence 47: 139–160CrossRefGoogle Scholar
  9. Chopra S., Meindl P. (2001) Supply chain management: Strategy planning and operation. Prentice-hall, Upper Saddle River, NJGoogle Scholar
  10. Cooper M., Lambert D. M., Pagh J. D. (1997) Supply chain management: More than a new name for logistics. International Journal of Logistics Management 18(2): 1–13CrossRefGoogle Scholar
  11. Demazeau, Y. (1996). Vowels, Invited lecture, IWDAIMAS96.Google Scholar
  12. Drucker P.F. (1998) Management’s new paradigms. Forbes Magazine, 162(7): 152–177Google Scholar
  13. Fischer, K., Müller, J. P., & Pischel, M. (1995). Unifying control in layered agent architecture. In IJCAI95, agent theory, architecture and language workshop (pp. 240–252).Google Scholar
  14. Frayret J. M, D’amours S., Rousseau A., Harvey S., Gaudreault J. (2008) Agent-based supply chain planning in the forest products industry. International Journal of Flexible Manufacturing Systems 19(4): 358–391CrossRefGoogle Scholar
  15. Fung R. Y. K., Chen T. (2005) A multiagent supply chain planning and coordination architecture. The International Journal of Advanced Manufacturing Technology 25(7–8): 811–819CrossRefGoogle Scholar
  16. Gutknecht, O., Ferber, J., & Michel, F. (2000). MadKit: Une expérience d’architecture de plate-forme multi-agents générique. 8ème Journées Francophones Intelligence Artificielle Distribuée Systèmes Multi-Agents JFIADSMA 2000. Saint-Jean Le Vêtre Octobre.Google Scholar
  17. Ingalls, R. G. (1998). The value of simulation in modeling supply chain. In Proceedings of the 1998 winter simulation conference (pp. 1371–1375). Washington DC.Google Scholar
  18. Ito T., Abadi S. M. M. J. (2002) Agent-based material handling and inventory planning in warehouse. Journal of Intelligent Manufacturing 13(3): 201–210CrossRefGoogle Scholar
  19. Janssen, M. (2005). The architecture and business value of a semi-cooperative, agent-based supply chain management system. Electronic Commerce Research and Applications (4),315–328.Google Scholar
  20. Julien P.A. (1997) Les PME bilan et perspectives 2e edition. Paris, France, EconomicaGoogle Scholar
  21. Kent, S. (2002). Model-driven engineering. In IFM 2002, Vol. 2335 of LNCS (pp. 286–298). Springer-Verlag.Google Scholar
  22. Labarthe O., Espinasse B., Ferrarini A., Montreuil B. (2007) Toward a methodological framework for agent-based modeling and simulation of supply chains in a mass customization context. Simulation Modeling Practice and Theory 15: 113–136CrossRefGoogle Scholar
  23. Lambert D. M., Cooper M. C. (2000) Issues in supply chain management. Industrial Marketing Management 29(1): 65–83CrossRefGoogle Scholar
  24. Lee Y. H, Cho M. K., Kim S. J., Kim Y. B. (2002) Supply chain simulation with discrete continuous combined modelling. Computer and Industrial Engineering 43: 375–392CrossRefGoogle Scholar
  25. Longo F., Mirabelli G. (2008) An advanced supply chain management tool based on modelling and simulation. Computers & Industrial Engineering 54: 570–588CrossRefGoogle Scholar
  26. Monostori T., Vancza J., Kumara S. R. T. (2006) Agent-based systems for manufacturing. Annals of the CIRP 55(2): 697–720CrossRefGoogle Scholar
  27. Monteiro, T., Anciaux, D., D’amours, S., Espinasse, B., Ferrarini, A., & Labarthe, O. (2008). Simulation à base d’agents des systèmes de coordination et de planification des réseaux d’entreprises. In Chapitre 7 de : La simulation pour la gestion des chaînes logistiques, Lavoisier, Hermes Science Publications.Google Scholar
  28. Oztemel E., Tekez E.K. (2009) Interaction of agents in performance based supply chain management. Journal of Intelligent Manufacturing, 20(2): 159–167CrossRefGoogle Scholar
  29. Parunak, H., Savit, R., & Riolo, R. L. (1998). Agent-based modelling VS equation-based modelling: A case study and user’s guide. In Proceedings of multi-agent systems and agent-based simulation (MABS’98), LNAI 1534. Springer.Google Scholar
  30. Parunak, H. (1998). Wat can agents do in industry, and why? An overview of industrially-oriented R&D at CEC. Second international workshop on cooperative information agents, CIA’98. M. Klusch.Google Scholar
  31. Parunak H.V.D. (1999) Industrial and practical applications of DAI. In: Weiss G. (eds) Multi-agents systems. MIT Press, Cambridge, MA, pp 377–421Google Scholar
  32. Parunak, H., Savit, R., Riolo, R., & Stevens, J. (1999). DASCh: Dynamic analysis of supply chains. In Center of electronic commerce, DASCh final Report, part 0: Executive summary.Google Scholar
  33. Sarimveis H., Patrinos P., Tarantilis C. D., Kiranoudis C. T. (2008) Dynamic modelling and control of supply chain systems: A review. Computers & Operations Research 35: 3530–3561CrossRefGoogle Scholar
  34. Shen W., Norrie D. H. (1999) Agent-based systems for intelligent manufacturing : A state-of-the-art survey. Knowledge and Information Systems, an International Journal 1(2): 129– 156Google Scholar
  35. Shen W., Hao Q., Yoon H. J, Norrie D. H. (2006) Applications of agent-based systems in intelligent manufacturing: An updated review. Advanced Engineering Informatics 20: 415–431CrossRefGoogle Scholar
  36. Stevens G. C. (1989) Integrating the supply chain. International Journal of Physical Distribution and Materials Management 19(8): 3–8CrossRefGoogle Scholar
  37. Terzi S., Cavalieri S. (2004) Simulation in the supply chain context: A survey. Computers in Industry 53: 3–16CrossRefGoogle Scholar
  38. Thierry, C. (2003). Gestion des chaînes logistiques : Modèle et mise en œuvre pour l’aide à la décision à moyen terme, Accreditation to supervise research. University of Toulouse II.Google Scholar
  39. Tounsi, J., Boissière, J., & Habchi, G. (2008). A conceptual model for SME mechatronics supply chain. In 6th international industrial simulation conference (ISC’08) (pp. 273–280). Lyon, France.Google Scholar
  40. Tounsi, J. (2009). Modélisation pour la simulation de la chaîne logistique globale dans un environnement de production PME mécatronique. PhD Thesis of The University of Savoie, Industrial Engineering, 4th of December 2009.Google Scholar
  41. Tounsi, J., Azaiez, S., Habchi, G., & Boissière, J. (2009c). A multiagent approach for modelling SMEs mechatronic supply chains. In Proceedings of the 13th IFAC symposium on information control problems in manufacturing.Google Scholar
  42. Tounsi, J., Boissière, J., & Habchi, G. (2009a). Multiagent decision making for SME supply chain simulation. In Proceedings of 23rd European conference on modeling and simulation (ECMS) (pp. 203–211). Madrid, Espagne.Google Scholar
  43. Tounsi, J., Habchi, G., & Boissière, J. (2009b). A multiagent system for production synchronization in SME mechatronic supply chain. In Proceedings of the 10th middle Eastern simulation and modeling conference (MESM) (pp. 91–97). Beirut, Liban.Google Scholar
  44. Tounsi J., Habchi G., Boissière J. (2010) A conceptual model for SMEs mechatronics supply chain. International Journal of Computer Aided Engineering and Technology (IJCAET), 2(4): 371–387CrossRefGoogle Scholar
  45. Villarreal Lizarraga, C. L., Dupont, L., Gourg, D., & Pingaud, H. (2005). Contributing to management of shared projects in SMEs manufacturing clusters. In 18th international conference on production research (ICPR-18). Salerno, Italy.Google Scholar
  46. Wooldridge M. (2002) An introduction to multiagent systems. Jonh Wiley & Sons, Chicester, UKGoogle Scholar
  47. Wooldridge M. (1999) Intelligent agent. In: Weiss G. (eds) Multi-agents systems. MIT Press, Cambridge, MA, pp 27–77Google Scholar
  48. Yuan, Y., Liang, T., & Zhang, J. (2001). Using agent technology to support supply chain management: Potentials and challenges. Michael G. DeGroote School of Business, McMaster University, Hamilton, Ontarioa, Canada, Working Paper No. 453.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jihene Tounsi
    • 1
  • Georges Habchi
    • 1
  • Julien Boissière
    • 2
  • Selma Azaiez
    • 3
  1. 1.University of Savoie, SYMME-Polytech’AnnecyAnnecy-le-VieuxFrance
  2. 2.University of Savoie, LISTIC-Polytech’AnnecyAnnecy-le-VieuxFrance
  3. 3.CEA, LIST (Embedded Real-Time System Foundations Laboratory)Gif sur Yvette CedexFrance

Personalised recommendations