Advertisement

Journal of Intelligent Manufacturing

, Volume 23, Issue 4, pp 1179–1194 | Cite as

Metaheuristics and exact methods to solve a multiobjective parallel machines scheduling problem

  • Xiaohui Li
  • Farouk Yalaoui
  • Lionel Amodeo
  • Hicham Chehade
Article

Abstract

This paper deals with a multiobjective parallel machines scheduling problem. It consists in scheduling n independent jobs on m identical parallel machines. The job data such as processing times, release dates, due dates and sequence dependent setup times are considered. The goal is to optimize two different objectives: the makespan and the total tardiness. A mixed integer linear program is proposed to model the studied problem. As this problem is NP-hard in the strong sense, a metaheuristic method which is the second version of the non dominated sorting genetic algorithm (NSGA-II) is proposed to solve this problem. Since the parameters setting of a genetic algorithm is difficult, a fuzzy logic controller coupled with the NSGA-II (FLC-NSGA-II) is therefore proposed. The role of the fuzzy logic is to better set the crossover and the mutation probabilities in order to update the search ability. After that, an exact method based on the two phase method is also developed. We have used four measuring criteria to compare these methods. The experimental results show the advantages and the efficiency of FLC-NSGA-II.

Keywords

Scheduling problem Parallel machines Metaheuristics NSGA-II Fuzzy logic Two phase method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alidaee B., Rosa D. (1997) Scheduling parallel machines to minimize the total weighted and un-weighted tardiness. Computers and Operations Research 24(4): 775–788CrossRefGoogle Scholar
  2. Azizoglu M., Kirca O. (1998) Tardiness minimization on parallel machines. International Journal of Production Economics 55: 163–168CrossRefGoogle Scholar
  3. Baker K. R., Bertrand J. W. (1982) A dynamic priority rule for sequencing against due-date. Journal of Operational Management 3: 37–42CrossRefGoogle Scholar
  4. Bouibede-Hocine, K., T’kindt, V., & Tran, D. (2006). Two evolutionary algorithms for a uniform parallel machines. In 7th International Conference on Multi-Objective Programming and Goal Programming, Loire valley, France.Google Scholar
  5. Brucker P. (1998) Scheduling algorithm. Springer, BerlinGoogle Scholar
  6. Chang P. C., Chen S. H., Lin K. L. (2005) Two-phase sub population genetic algorithm for parallel machine-scheduling problem. Expert Systems with Applications 29(3): 705–712CrossRefGoogle Scholar
  7. Chang, P. C., Chen, S. H., & Hsieh, J. C. (2006). A global archive sub-population genetic algorithm with adaptive strategy in multi-objective parallel-machine scheduling problem. In Proceedings of International Conference on Natural Computation (pp. 730–739)Google Scholar
  8. Cheng T., Sin C. (1990) A state-of-the-art review of parallel-machine scheduling research. European Journal of Operational Research 47: 271–292CrossRefGoogle Scholar
  9. Cochran J. K., Horng S. M., Fowler J. W. (2003) A multi-population genetic algorithm to solve multi-objective scheduling problems for parallel machines. Computers and Operations Reaserch 30: 1087–1102CrossRefGoogle Scholar
  10. Corne, D. W., Knowles, J. D., & Oates, M. J. (2000). The Pareto envelope based selection algorithm for multiobjective optimization. In Proceedings of the Parallel Problem Solving from Nature VI Conference (pp. 839–848).Google Scholar
  11. Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In Proceedings of the Parallel Problem Solving from Nature VI Conference (pp. 849–858).Google Scholar
  12. Dugardin, F., Chehade, H., Amodeo, L., Yalaoui, F., & Prins, C. (2007). Hybrid Job Shop and parallel machine scheduling problems: minimization of total tardiness criterion. In E. Levner (Ed.), Multiprocessor scheduling: theory and applications (pp. 436), ISBN 978-3-902613-02-8.Google Scholar
  13. Dugardin F., Yalaoui F., Amodeo L. (2010) New multi-objective method to solve re-entrant hybrid flow shop scheduling problem. European Journal of Operation Research 203: 22–31CrossRefGoogle Scholar
  14. Eren T. (2008) A bicriteria parallel machine scheduling with a learning effect of setup and removal times. Applied Mathematical Modeling, Information Systems and Operational Research 45: 75–81CrossRefGoogle Scholar
  15. Fonseça, C. M. & Fleming, P. J. (1993) Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In Proceedings of the Fifth International Conference on Genetic Algorithms, San Mateo, California (pp. 416–423).Google Scholar
  16. Gendreau M., Laporte G., Guimaraes E. M. (2001) A divide and merge heuristic for the multiprocessor scheduling problem with sequence dependent setup times. European Journal of Operational Reasearch 133: 183–189CrossRefGoogle Scholar
  17. Gharbi A., Haouari M. (2002) Minimizing makespan on parallel machines subject to release dates and delivery times. Journal of Scheduling 5: 329–355CrossRefGoogle Scholar
  18. Haimes Y., Ladson L., Wismer D. (1971) On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Transaction on System 1: 296–297Google Scholar
  19. Haimes Y., Hall W., Freedman H. (1975) Multiobjective optimization in water resource systems: the surrogate worth trade off method. Elsevier, New YaokGoogle Scholar
  20. Hajela P., Lin C. Y. (1992) Genetic Search Strategies in Multicriterion Optimal Design. Structural optimization 4: 99–107CrossRefGoogle Scholar
  21. Horn, J., Nafpliotis, N., & Goldberg, D. E. (1994). A niched pareto genetic algorithm for multiobjective optimization. In Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Computation (Vol. 1, pp. 82–87).Google Scholar
  22. Jungwattanakit J., Reodecha M., Chaovalitwongse P., Werner F. (2008) Algorithms for flexible flow shop problems with unrelated parallel machines, setup times, and dual criteria. International Journal of Advanced Manufacturing Technology 37: 354–370CrossRefGoogle Scholar
  23. King, R. T. F. A., Radha, B., & Rughooputh, H. C. S. (2004). A fuzzy logic controlled genetic algorithm for optimal electrical distribution network reconfiguration. In Proceedings of 2004 IEEE international conference on networking, sensing and control (pp. 577–582).Google Scholar
  24. Knowles J. D., Corne D. W. (2000) Approximating the Nondominated Front Using the Pareto Archived Evolution Stratege. Evolutionary Computation 8(2): 149–172CrossRefGoogle Scholar
  25. Koulamas C. (1994) The total tardiness problem: review and extension. Operations Research 42: 764–775CrossRefGoogle Scholar
  26. Kumar S.V., Ranjithan S.R. (2002) Evaluation of the Constraint Method-based Multiobjective Evolutionary Algorithm (CMEA) for a three objective optimization problem. In: Langdon W.B. et al. (eds) Proceedings of the genetic and evolutionary computation conference (GECCO 2002). Morgan Kaufmann, New York, pp 431–438Google Scholar
  27. Kursame, F. (1991) A variant of Evolution Strategies for Vector Optimization. In Schwefel, H.P. Manner, R. (Eds.), Parallel problem solving from nature, 1st workshop, PPSNI, (Vol. 496 of Lecture Notes in Computer Science, pp. 193–197).Google Scholar
  28. Lau, H. C. W., Chan, T. M., Tsui, W. T., & HO, G. T. S. (2009). Cost optimization of the supply chain network using genetic algorithms. In IEEE Transactions on Knowledge and Data Engineering, (Vol. 99(1))Google Scholar
  29. Lau H. C. W., Chan T. M., Tsui W. T., Chan F. T. S., Ho G. T. S., Choy K. L. (2009) A fuzzy guided multi-objective evolutionay algorithm model for solving transportation problem. Expert Systems with Applications 36: 8255–8268CrossRefGoogle Scholar
  30. Leekwijck W. V., Kerre E. E. (1997) Defuzzification: criteria and classification. Fuzzy Sets and Systems 108: 159–178CrossRefGoogle Scholar
  31. Lemesre J., Dhaenens C., Talbi E. (2007a) An exact parallel method for a bi-objective permutation flowshop problem. European Journal of Operational Research 177: 1641–1655CrossRefGoogle Scholar
  32. Lemesre J., Dhaenens C., Talbi E. (2007b) Parallel Partitioning method (PPM): A new exact method to solve bi-objective problems. Computers and Operations Research 34: 2450–2462CrossRefGoogle Scholar
  33. Li, X., Yalaoui, F., Amodeo, L., & Hamzaoui, A. (2009). Multiobjective method to solve a parallel machine scheduling problem. In 7th International Logistics & Supply Chain Congress’09, Istanbul, Turkey, November 5–6.Google Scholar
  34. Lofti, A. A. & Kashani, F. H. (2004). Bandwidth optimization of the E-shaped microstrip antenna using the genetic algorithm based on fuzzy decision making, In Proceeding of 2004 IEEE antennas and propagation society international symposium (pp. 2333–2336).Google Scholar
  35. Nessah R., Chu C., Yalaoui F. (2005) An exact method for \({P_{m}/sds, r_{i}/\sum^{n}_{i=1}C_{i}}\) problem. Computers & Operations Research 34: 2840–2848CrossRefGoogle Scholar
  36. Pritsker A. A. B., Walters L. J., Wolf P. M. (1969) Multi-project scheduling with limited resources: A zero-one programming approach. Management Science 16: 93–108CrossRefGoogle Scholar
  37. Przybylski, A. (2006). Méthode en deux phases pour la resolution exacte de problèmes d’optimisation combinatoire comportant plusieurs objectifs: nouveaux développements et application au problème d’affectation linéaire, Ph.D thesis, University of Nantes.Google Scholar
  38. Ranjithan, S. R., Chetan, S. K., & Dakshina, H. K. (2001). Constraint method-based evolutionary algorithm (CMEA) for multiobjective optimization, In Evolutionary Multi-Criteria Optimization (pp. 299–313).Google Scholar
  39. Riise, A. (2002). Comparing genetic algorithms and tabu search for multi-objective optimization, In Abstract conference proceedings, Edinburgh, UK, July 2002 (pp. 29).Google Scholar
  40. Schaffer, J. D. (1985). Multiple objective optimization with vector evaluated genetic algorithms. In Proceedings of the First International Conference on Genetic Algorithms (pp. 93–100).Google Scholar
  41. Shim A.-O., Kim Y.-D. (2007) Scheduling on parallel identical machine to minimize total tardiness. European Journal of Operational Research 177: 135–146CrossRefGoogle Scholar
  42. Song Y. H., Wang H. S., Wang P. Y., Johns A. T. (1997) Environmental/economic dispatch using fuzzy logic controlled genetic algorithms. IEE Proceeding of Generation Transmission and Distribution 144(4): 377–382CrossRefGoogle Scholar
  43. Ulungu E., Teghem J. (1995) The two phase method: an efficient procedure to solve bi-objective combinatorial optimization problems. Foundations of Computing and Decision Sciences 20(2): 149–165Google Scholar
  44. VanVeldhuizen, D. A. (1999). Multiobjective Evolutionary Algorithms: Classification, Analyses, and New Innovations, PhD thesis, Department of Electrical and Computer Engineering, Graduate School of Engineering, Air Force Institute of Technology, Wright-Patterson AFB, Ohio.Google Scholar
  45. Yalaoui F., Chu C. (2002) An efficient heuristic approach for parallel machine scheduling with job splitting and sequence-dependent setup times. IIE Transactions 35: 183–190CrossRefGoogle Scholar
  46. Yalaoui F., Chu C. (2002) Parallel machine scheduling to minimize total tardiness. International Journal Production Economics 76: 265–279CrossRefGoogle Scholar
  47. Yalaoui N., Dugardin F., Yalaoui F., Amodeo L., Mahdi H. (2010) Fuzzy Project Scheduling, Production Engineering and Management under Fuzziness. Springer, BerlinGoogle Scholar
  48. Zadeh L. A. (1965) Fuzzy Sets. Information and Control 8: 338–353CrossRefGoogle Scholar
  49. Zitzler E., Thiele L. (1999) Multi-objective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation 3(4): 257–271CrossRefGoogle Scholar
  50. Zitzler, E., Laumanns, M., & Thiele, L., SPEA2 : Improving the Strength Pareto Evolutionary Algorithm Swiss Federal Institute of Technology, Lausanne, Switerland, Tech. Rep. TIK-Rep, 103.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Xiaohui Li
    • 1
  • Farouk Yalaoui
    • 1
  • Lionel Amodeo
    • 1
  • Hicham Chehade
    • 1
  1. 1.Institut Charles Delaunay, LOSIUniversity of Technology of Troyes, UMR-STMR 6279Troyes CedexFrance

Personalised recommendations