Advertisement

Journal of Intelligent Manufacturing

, Volume 23, Issue 3, pp 759–774 | Cite as

Vehicle routing scheduling using an enhanced hybrid optimization approach

  • Behnam Vahdani
  • Reza Tavakkoli-Moghaddam
  • Mostafa Zandieh
  • Jafar Razmi
Article

Abstract

Cross docking play an indispensable role in streamlining the efficiency and effectiveness of any supply chain operations. Owing to the need to reduce transportation lead time and increase coordination between other supply chain activities such as just-in-time, make-to-order, or merge-in-transit strategies, shortening the total transfer time at cross docking is increasing important. Thus, in this paper we propose a new hybrid metaheuristic for vehicle routing scheduling in cross-docking systems. This new hybrid algorithm incorporates the elements from Particle Swam Optimization, Simulated Annealing and Variable Neighborhood Search to enhance its search capabilities. On view of the fact that the performance of metaheuristic algorithms are considerably influenced by the proper tuning of their parameters, we take advantage of Taguchi’s robust design method to come up with the best parameters of the before-mentioned algorithms. In order to measure the performance of our proposed algorithm, we compared it with the Tabu Search algorithm presented by Lee et al. (Comput Ind Eng 51:247–256, 2006). The computational evaluations clearly support the high performance of our proposed algorithm against other algorithm in the literature.

Keywords

Cross docking Vehicle routing scheduling Hybrid metaheuristic Tabu search (TS) Particle swarm optimization (PSO) Variable neighborhood search (VNS) Simulated annealing (SA) Taguchi method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarts E., Lenstra J. K. (1997) Search in combinatorial optimization. Wiley, New YorkGoogle Scholar
  2. Ahuja R. K., Ergun O., Orlin J. B., Punnen A. P. (2002) A survey of very large-scale neighborhood search techniques. Discrete Apply Mathematics 123: 75–102CrossRefGoogle Scholar
  3. Apte M. U., Viswanathan S. (2000) Effective cross docking for improving distribution efficiencies. International Journal of Logistics: Research and Applications 3(3): 291–302CrossRefGoogle Scholar
  4. Barbarosoglu G., Ozgur D. (1999) A Tabu search algorithm for the vehicle routing problem. Computer & Operational Research 26: 255–270CrossRefGoogle Scholar
  5. Bartholdi J. J. III, Gue R. K. (2004) The best shape for a crossdock. Transportation Sciences 38(2): 235–244CrossRefGoogle Scholar
  6. Boysen, N., Fliedner, M., & Scholl, A. (2008). Scheduling inbound and outbound trucks at crossdocking terminals. OR Spectrum, 1–27.Google Scholar
  7. Chen F., Song K. L. (2006) Cross docking logistics scheduling problem and its approximation and exact algorithms. Industry Engineering and Management 6: 53–58Google Scholar
  8. Chen, F., & Song, K. L. (2008). Minimizing makespan in two-stage hybrid cross docking scheduling problem, Computers & Operations Research. doi: 10.1016/j.cor.2008.07.003.
  9. Dong, G., Tang, J., Lai, K. K., & Kong, Y. (2009). An exact algorithm for vehicle routing and scheduling problem of free pickup and delivery service in flight ticket sales companies based on set-partitioning model. Journal of Intelligent Manufacturing. doi: 10.1007/s10845-009-0311-9.
  10. Eddie Y. K., Ng E. W., Kee N. (2006) Parametric study of the biopotential equation for breast tumour identification using ANOVA and Taguchi method. International Federation for Medical and Biological Engineering 44: 131–139Google Scholar
  11. Eiben A. E., Hinterding R., Michalewicz Z. (1999) Parameter control in evolutionary algorithms. IEEE Transactions on Evolutionary Computation 3(22): 124–141CrossRefGoogle Scholar
  12. Glover F. (1989) Tabu search. Part I. ORSA Journal on Computing 1: 190–206CrossRefGoogle Scholar
  13. Glover F. (1990) Tabu search. Part II. ORSA Journal on Computing 2: 4–32CrossRefGoogle Scholar
  14. Glover F., Laguna M. (1997) Tabu search. Kluwer, BostonCrossRefGoogle Scholar
  15. Grefenstette J. J. (1986) Optimisation of control parameters for genetic algorithms. IEEE Transaction on Systems, Man and Cybernetics 16(1): 122–128CrossRefGoogle Scholar
  16. Hansen P., Mladenovic N., Dragan U. (2004) Variable neighborhood search for the maximum clique. Discrete Applied Mathematics 145(1): 117–125CrossRefGoogle Scholar
  17. Janiak A., Kozan E., Lichtenstein M., Oguz C. (2007) Metaheuristic approaches to the hybrid flowshop scheduling problem with a cost-related criterion. International Journal of Production Economics 105: 407–424CrossRefGoogle Scholar
  18. Jia H. Z., Nee A. Y. C., Fuh J. Y. H., Zhang Y. F. (2003) A modified genetic algorithm for distributed scheduling. Journal of Intelligent Manufacturing 14: 3–4CrossRefGoogle Scholar
  19. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceeding of the 1995 IEEE international conference on neural network, Perth, Australia, 1942–1948 Google Scholar
  20. Kirkpatrick S., Gelatt C. D., Vecchi M. P. (1983) Optimization by simulated annealing. Science 220: 671–680CrossRefGoogle Scholar
  21. Landrieu A., Mati Y., Binder Z. (2001) A tabu search heuristic for the single vehicle pickup and delivery problem with time windows. Journal of Intelligent Manufacturing 12: 5–6CrossRefGoogle Scholar
  22. Lau H. C., Sim M., Teo K. M. (2003) Vehicle routing problem with time windows and a limited number of vehicles. European Journal of Operational Research 148: 559–569CrossRefGoogle Scholar
  23. Lee Y. H., Jung W. J., Lee K. M. (2006) Vehicle routing scheduling for cross-docking in the supply chain. Computers & Industrial Engineering 51: 247–256CrossRefGoogle Scholar
  24. Li Y., Lim A., Rodrigues B. (2004) Crossdocking—JIT scheduling with time windows. Journal of the Operational Research Society 55(12): 1342–1351CrossRefGoogle Scholar
  25. Lim A., Ma H., Miao Z. et al (2006) Truck dock assignment problem with time windows and capacity constraint in transshipment network through crossdocks. In: Gavrilova M. (eds) Computational science and its applications—ICCSA. Springer, Berlin/Heidelberg, pp 688–697CrossRefGoogle Scholar
  26. Lim A., Ma H., Miao Z. (2006) Truck dock assignment problem with operational time constraint within crossdocks. In: Ali M., Dapoigny R. (eds) Advances in applied artificial intelligence. Springer, Berlin/Heidelberg, pp 262–271CrossRefGoogle Scholar
  27. Ma D. Y., Chen F. (2007) Dynamic programming algorithm on two machines cross docking scheduling. Journal of Shanghai Jiao Tong University 41(5): 852–856Google Scholar
  28. Michalewicz Z. (1996) Genetic algorithms + data structures = evolution programs (3rd ed.). Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  29. Michalewicz Z., Schoenauer M. (1996) Evolutionary algorithms for constrained parameter optimisation problems. Evolutionary Computation 4(1): 1–32CrossRefGoogle Scholar
  30. Mosheiov G. (1998) Vehicle routing with pick-up and delivery: tour—partitioning heuristics. Computers & Industrial Engineering 34: 669–684CrossRefGoogle Scholar
  31. Rohrer, M. (1995). Simulation and cross docking. In Proceedings of the 1995 winter simulation conference (pp. 846–849).Google Scholar
  32. Roshanaei V., Naderi B., Jolai F., Khalili M. (2009) A variable neighborhood search for job shop scheduling with setup times to minimize makespan. Future Generation Computer Systems 25: 654–661CrossRefGoogle Scholar
  33. Schwind G. F. (1996) A systems approach to docks and cross docking. Material Handling Engineering 51(2): 59–62Google Scholar
  34. Tian P., Ma J., Zhang D. M. (1999) Application of the simulated annealing algorithm to the combinatorial optimization problem with permutation property: An investigation of generation mechanism. European Journal of Operational Research 118: 81–94CrossRefGoogle Scholar
  35. Vahdani, B., & Zandieh, M. (2009). Scheduling trucks in cross-docking systems: Robust meta-heuristics. Computers & Industrial Engineering. doi: 10.1016/j.cie.2009.06.006.
  36. Waller M. A., Richard C. C., Ozment J. (2006) Impact of cross-docking on inventory in a decentralized retail supply chain. Transportation Research Part E 42: 359–382CrossRefGoogle Scholar
  37. Wang, C. H., & Lu, J. Z. (2009). An effective evolutionary algorithm for the practical capacitated vehicle routing problems. Journal of Intelligent Manufacturing. doi: 10.1007/s10845-008-0185-2.
  38. Wang J. F., Regan A. (2008) Real-time trailer scheduling for cross dock operations. Transportation Journal 47(2): 5–20Google Scholar
  39. Yao X. (1995) A new simulated annealing algorithm. International Journal of Computer Mathematics 56: 161–168CrossRefGoogle Scholar
  40. Yu W., Egbelu P. J. (2008) Scheduling of inbound and outbound trucks in cross docking systems with temporary storage. European Journal of Operational Research 184: 377–396CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Behnam Vahdani
    • 1
  • Reza Tavakkoli-Moghaddam
    • 1
  • Mostafa Zandieh
    • 2
  • Jafar Razmi
    • 1
  1. 1.Department of Industrial Engineering, College of EngineeringUniversity of TehranTehranIran
  2. 2.Department of Industrial Management, Management and Accounting FacultyShahid Beheshti University, G.C.TehranIran

Personalised recommendations