Advertisement

Journal of Intelligent Manufacturing

, Volume 23, Issue 4, pp 1167–1177 | Cite as

A genetic algorithm with genes-association recognition for flowshop scheduling problems

  • C. Sauvey
  • N. Sauer
Article

Abstract

In this paper, we consider a flowshop scheduling problem with a special blocking RCb (Release when Completing Blocking). This flexible production system is prevalent in some industrial environments. Genetic algorithms are first proposed for solving these flowshop problems and different initial populations have been tested to find which is best adapted. Then, a method is proposed for further improving genetic algorithm found solutions, which consists in marking out recurrent genes association occurrences in an already genetic algorithm optimized population. This idea directly follows Holland’s first statement about nature observations. Here, proposed idea is that populations well adapted to a problem have an adapted genetic code with common properties. We propose to mark out these properties in available genetic code to further improve genetic algorithm efficiency. Implementation of this method is presented and obtained results on flowshop scheduling problems are discussed.

Keywords

Scheduling Flowshop Blocking Genetic Algorithms Initial populations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Caraffa V., Ianes S., Bagchi T. P., Sriskandarajah C. (2001) Minimizing makespan in a blocking flowshop using genetic algorithms. International Journal Production Economics 70: 101–115CrossRefGoogle Scholar
  2. Chen C. L., Vempati V. S., Aljaber N. (1995) An application of genetic algorithms for flowshop problems. European Journal of Operational Research 80(2): 389–396CrossRefGoogle Scholar
  3. Dauzère-Pérès, S., Pavageau, C., & Sauer, N. (2000). Modélisation et résolution par PLNE d’un problème réel d’ordonnancement avec contraintes de blocage, 3ème congrès de la société Française de Recherche Opérationnelle et d’Aide à la Décision (ROADEF’2000) (pp. 216–217). Nantes, France.Google Scholar
  4. Dauzère-Pérès, S., Pavageau, C., & Sauer, N. (2000 August). IP for modelling and solving an industrial hybrid flow-shop scheduling problem with blocking. In: Proceedings of 17th international symposium on mathematical programming (ISMP’2000). Atlanta, USA.Google Scholar
  5. Della Croce F., Tadei R., Volta G. (1995) A genetic algorithm for the job shop problem. Computers and Operations Research 22: 15–24CrossRefGoogle Scholar
  6. Gonçalves J. F., Magalhăes Mendes de J. J., Resend M. G. C. (2005) A hybrid genetic algorithm for the job shop scheduling problem. European Journal of Operational Research 167(1): 77–95CrossRefGoogle Scholar
  7. Hall N. G., Sriskandarajah C. (1996) A survey of machine scheduling problems with blocking and no-wait in process. Operations Research 44(3): 510–525CrossRefGoogle Scholar
  8. Hejazi S. R., Saghafian S. (2005) Flowshop-scheduling problems with makespan criterion: A review. International Journal of Production Research 43(14): 2895–2929CrossRefGoogle Scholar
  9. Holger H. H., Stützle T. (2005) Stochastic local search: Foundations and applications. Morgan Kaufmann, San Francisco, CA, USAGoogle Scholar
  10. Holland J. H. (1962) Outline for logical theory of adaptive systems. Journal of the association of computing machinery 3: 297–314CrossRefGoogle Scholar
  11. Iyer S. K., Saxena B. (2004) Improved genetic algorithm for the permutation flowshop scheduling problem. Computers and Operations Research 31: 593–606CrossRefGoogle Scholar
  12. Johnson S. M. (1954) Optimal two- and three-stage production schedules with setup times included. Naval Research Logistics Quarterly 1: 61–68CrossRefGoogle Scholar
  13. Martinez, S. (2005). Ordonnancement de systèmes de production avec contraintes de blocage, Ph.D thesis, IRCCyN. Nantes, France.Google Scholar
  14. Martinez, S., Guéret, C., & Sauer, N. (2004). A simulated annealing method for the flow-shop with a new blocking constraint. In 20th European conference on operational research (EURO’04) (p. 27). Rhodes, Greece.Google Scholar
  15. Martinez S., Dauzière-Pérès S., Guèret C., Mati Y., Sauer N. (2006) Complexity of flowshop scheduling problems with a new blocking constraint. European Journal of Operational Research 169(3): 855–864CrossRefGoogle Scholar
  16. Murata T. et al (1996) Genetic algorithm for flowshop scheduling problems. Computers and Industrial Engineering 30(4): 1061–1071CrossRefGoogle Scholar
  17. Nagano M. S. et al (2008) A constructive genetic algorithm for permutation flowshop scheduling. Computers & Industrial Engineering 55: 195–207CrossRefGoogle Scholar
  18. Nawaz M., Enscore E., Ham I. (1983) A heuristic algorithm for the m-machine, n-job flowshop sequencing problem. OMEGA. The International Journal of Management Science 11(1): 91–95Google Scholar
  19. Oguz C., Ercan M. F. (2005) A Genetic algorithm for hybrid flow-shop scheduling with multiprocessor tasks. Journal of Scheduling 8: 323–351CrossRefGoogle Scholar
  20. Reeves C. R. (1995) A genetic algorithm for flowshop sequencing. Computers and Operations Research 22: 5–13CrossRefGoogle Scholar
  21. Ruiz R., Maroto C. (2005) A comprehensive review and evaluation of permutation flowshop heuristics. European Journal of Operational Research 165(2): 479–494CrossRefGoogle Scholar
  22. Salazar, D., Gandibleux, X., Jorge, J., & Sevaux, M. (2009). A robust-solution-based methodology to solve multiple-objective problems with uncertainty. In Multi objective programming and goal programming (Vol. 618, pp. 197–207). Berlin, Heidelberg: Springer. ISBN:978-3-540-85645-0 (Print), 978-3-540-85646-7 (Online).Google Scholar
  23. Sauvey, C., & Sauer, N. (2009a). Initial populations tests for genetic algorithm flowshop scheduling problems solving with a special blocking. In INCOM’09: Proceedings of 13th IFAC symposium on information control problems in manufacturing, June 3–5, 2009, Moscow, Russia, pp. 1961–1966.Google Scholar
  24. Sauvey, C., & Sauer, N. (2009b). Heuristique pour la résolution des problèmes d’ordonnancement de type flowshop avec blocage RCb, ROADEF’2009. France: Nancy, nº19.Google Scholar
  25. Siarry, P., & Michalewicz, Z. (2007). Advances in metaheuristics for hard optimization, Springer-natural computing series.Google Scholar
  26. Wang L., Zhang L., Zheng D. Z. (2006) An effective hybrid genetic algorithm for flow shop sheduling with limited buffers. Computers & Operations Research 33: 2960–2971CrossRefGoogle Scholar
  27. Yuan, K., & Sauer, N. (2007). Application of EM algorithm to flowshop scheduling problems with a special blocking, IESM’07. Beijing.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.LGIPMUniversity Paul Verlaine-MetzMetzFrance
  2. 2.LGIPMUniversity Paul Verlaine-MetzMetzFrance

Personalised recommendations