Journal of Intelligent Manufacturing

, Volume 22, Issue 5, pp 801–813 | Cite as

Process industry scheduling optimization using genetic algorithm and mathematical programming

  • F. Oliveira
  • S. Hamacher
  • M. R. Almeida


This article addresses the problem of scheduling in oil refineries. The problem consists of a multi-product plant scheduling, with two serial machine stages—a mixer and a set of tanks—which have resource constraints and operate on a continuous flow basis. Two models were developed: the first using mixed-integer linear programming (MILP) and the second using genetic algorithms (GA). Their main objective was to meet the whole forecast demand, observing the operating constraints of the refinery and minimizing the number of operational changes. A real-life data-set related to the production of fuel oil and asphalt in a large refinery was used. The MILP and GA models proved to be good solutions for both primary objectives, but the GA model resulted in a smaller number of operational changes. The reason for this is that GA incorporates a multi-criteria approach, which is capable of adaptively updating the weights of the objective throughout the evolutionary process.


Scheduling Refining MILP Genetic algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ballintijn K. (1993) Optimization in refinery scheduling: Modeling and solution. Optimization in industry. Mathematical Programming and Modeling Techniques in Practice 1: 191–199Google Scholar
  2. Berrichi, A., Amodeo, L., Yalaoui, F., Châtelet, E., & Mezghiche, M. (2008). Bi-objective optimization algorithms for joint production and maintenance scheduling: Application to the parallel machine problem. Journal of Intelligent Manufacturing. doi: 10.1007/s10845-008-0113-5.
  3. Blazewicz J., Domschke W., Pesch E. (1996) The job shop scheduling problem: Conventional and new solution techniques. European Journal of Operational Research 93(1): 1–33. doi: 10.1016/0377-2217(95)00362-2 CrossRefGoogle Scholar
  4. Casas-Liza J., Pinto J. (2005) Optimal scheduling of a lube oil and paraffin production plant. Computers and Chemical Engineering 29(6): 1329–1344. doi: 10.1016/j.compchemeng.2005.02.032 CrossRefGoogle Scholar
  5. Chryssolouris G., Subramaniam V. (2001) Dynamic scheduling of manufacturing job shops using genetic algorithms. Journal of Intelligent Manufacturing 12(3): 281–293. doi: 10.1023/A:1011253011638 CrossRefGoogle Scholar
  6. Churchland P., Sejnowski T. (1996) The Computational Brain. MIT Press, Cambridge, MAGoogle Scholar
  7. Dahal K., Burt G., NcDonald J., Moyes A. (2001) A case study of scheduling storage tanks using a hybrid genetic algorithm. IEEE Transactions on Evolutionary Computation 5(3): 283–294CrossRefGoogle Scholar
  8. Göthe-Lundgren M., Lundgren J., Pearson J., i Linköping U., Mathematics D. O. (2002) An optimization model for refinery production scheduling. International Journal of Production Economics 78(3): 255–270. doi: 10.1016/S0925-5273(00)00162-6 CrossRefGoogle Scholar
  9. He Y., Hui C. (2007) Genetic algorithm based on heuristic rules for high-constrained large-size single-stage multi-product scheduling with parallel units. Chemical Engineering and Processing. Process Intensification 46(11): 1175–1191. doi: 10.1016/j.cep.2007.02.023 CrossRefGoogle Scholar
  10. Horn J. (1997) Multicriterion Decision Making. In: Back T., Fogel D. B., Michalewicz Z. (eds) Handbook of evolutionary computation. IOP Publ. Ltd and Oxford University Press, OxfordGoogle Scholar
  11. Jia H. Z., Nee A. Y. C., Fuh J. Y. H., Zhang Y. F. (2003) A modified genetic algorithm for distributed scheduling problems. Journal of Intelligent Manufacturing 14(3): 351–362. doi: 10.1023/A:1024653810491 CrossRefGoogle Scholar
  12. Joly M., Moro L., Pinto J. (2002) Planning and scheduling for petroleum refineries using mathematical programming. Brazilian Journal of Chemical Engineering 19: 207–228. doi: 10.1590/S0104-66322002000200008 CrossRefGoogle Scholar
  13. Jonathan, M., Zebulum, R., Patheco, M., & Vellasco, M. (2000). Multiobjective optimization techniques: a study of the energy minimization method and its application to the synthesis of ota amplifiers.Google Scholar
  14. Kallrath J. (2002) Planning and scheduling in the process industry. OR-Spektrum 24(3): 219–250. doi: 10.1007/s00291-002-0101-7 Google Scholar
  15. Karuppiah, R., Furman, K. C., & Grossmann, I. E. (2008). Global optimization for scheduling refinery crude oil operations. Computers and Chemical Engineering (in press).Google Scholar
  16. Khosla D., Gupta S., Saraf D. (2007) Multi-objective optimization of fuel oil blending using the jumping gene adaptation of genetic algorithm. Fuel Processing Technology 88(1): 51–63. doi: 10.1016/j.fuproc.2006.08.009 CrossRefGoogle Scholar
  17. Lee I., Sikora R., Shaw M. (1997) A genetic algorithm-based approach to flexible flow-line scheduling with variable lot sizes. Systems, Man and Cybernetics, Part B, IEEE Transactions on 27(1): 36–54CrossRefGoogle Scholar
  18. Luo Y.-C., Guignard M., Chen C.-H. (2001) A Hybrid approach for integer programming combining genetic algorithms, linear programming and ordinal optimization. Journal of Intelligent Manufacturing 12(5): 509–519. doi: 10.1023/A:1012256521687 CrossRefGoogle Scholar
  19. Martin C. (2009) A hybrid genetic algorithm/mathematical programming approach to the multi-family flowshop scheduling problem with lot streaming. Omega 37(1): 126–137. doi: 10.1016/ CrossRefGoogle Scholar
  20. Moon C., Seo Y., Yun Y., Gen M. (2006) Adaptive genetic algorithm for advanced planning in manufacturing supply chain. Journal of Intelligent Manufacturing 17(4): 509–522. doi: 10.1007/s10845-005-0010-0 CrossRefGoogle Scholar
  21. Morad N., Zalzala A. M. S (1999) Genetic algorithms in integrated process planning and scheduling. Journal of Intelligent Manufacturing 10(2): 169–179. doi: 10.1023/A:1008976720878 CrossRefGoogle Scholar
  22. Moro L. (2003) Process technology in the petroleum refining industry—current situation and future trends. Computers & Chemical Engineering 27(8-9): 1303–1305. doi: 10.1016/S0098-1354(03)00054-1 CrossRefGoogle Scholar
  23. Moro L., Pinto J. (2004) Mixed-integer programming approach for short-term crude oil scheduling. Industrial and Engineering Chemistry Research 43(1): 85–94. doi: 10.1021/ie030348d CrossRefGoogle Scholar
  24. Pinto J., Joly M., Moro L. (2000) Planning and scheduling models for refinery operations. Computers and Chemical Engineering 24(9-10): 2259–2276. doi: 10.1016/S0098-1354(00)00571-8 CrossRefGoogle Scholar
  25. Potts C., Kovalyov M. (2000) Scheduling with batching: A review. European Journal of Operational Research 120(2): 228–249. doi: 10.1016/S0377-2217(99)00153-8 CrossRefGoogle Scholar
  26. Sahdev, M. K., Jain, K. K., & Srivastava, P. (2004). Petroleum refinery planning and optmization using linear programming: Cheresources.Google Scholar
  27. Simão, L., Dias, D., & Pacheco, M. (2007). Refinery scheduling optimization using genetic algorithms and cooperative coevolution.Google Scholar
  28. Turkcan A., Akturk M. S. (2003) A problem space genetic algorithm in multiobjective optimization. Journal of Intelligent Manufacturing 14(3): 363–378. doi: 10.1023/A:1024605927329 CrossRefGoogle Scholar
  29. Wang H.-f., Wu K.-y (2003) Modeling and analysis for multi-period, multi-product and multi-resource production scheduling. Journal of Intelligent Manufacturing 14(3): 297–309. doi: 10.1023/A:1024645608673 CrossRefGoogle Scholar
  30. Wu N., Zhou M., Chu F. (2005) Short-term scheduling for refinery process: Bridging the gap between theory and applications. International Journal of Intelligent Control and Systems 10(2): 162–174Google Scholar
  31. Zebulum, R. S., Pacheco, M. A., & Vellasco, M. (1998). Synthesis of CMOS operational amplifiers through genetic algorithms. Proceedings of XI Brazillian symposium on integrated circuit design, pp. 125–128.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Pontifícia Universidade Católica, PUC-RioRio de JaneiroBrazil
  2. 2.Petrobras, Petróleo Brasileiro S.A.Rio de JaneiroBrazil

Personalised recommendations