Skip to main content

Advertisement

Log in

Process industry scheduling optimization using genetic algorithm and mathematical programming

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

This article addresses the problem of scheduling in oil refineries. The problem consists of a multi-product plant scheduling, with two serial machine stages—a mixer and a set of tanks—which have resource constraints and operate on a continuous flow basis. Two models were developed: the first using mixed-integer linear programming (MILP) and the second using genetic algorithms (GA). Their main objective was to meet the whole forecast demand, observing the operating constraints of the refinery and minimizing the number of operational changes. A real-life data-set related to the production of fuel oil and asphalt in a large refinery was used. The MILP and GA models proved to be good solutions for both primary objectives, but the GA model resulted in a smaller number of operational changes. The reason for this is that GA incorporates a multi-criteria approach, which is capable of adaptively updating the weights of the objective throughout the evolutionary process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ballintijn K. (1993) Optimization in refinery scheduling: Modeling and solution. Optimization in industry. Mathematical Programming and Modeling Techniques in Practice 1: 191–199

    Google Scholar 

  • Berrichi, A., Amodeo, L., Yalaoui, F., Châtelet, E., & Mezghiche, M. (2008). Bi-objective optimization algorithms for joint production and maintenance scheduling: Application to the parallel machine problem. Journal of Intelligent Manufacturing. doi:10.1007/s10845-008-0113-5.

  • Blazewicz J., Domschke W., Pesch E. (1996) The job shop scheduling problem: Conventional and new solution techniques. European Journal of Operational Research 93(1): 1–33. doi:10.1016/0377-2217(95)00362-2

    Article  Google Scholar 

  • Casas-Liza J., Pinto J. (2005) Optimal scheduling of a lube oil and paraffin production plant. Computers and Chemical Engineering 29(6): 1329–1344. doi:10.1016/j.compchemeng.2005.02.032

    Article  Google Scholar 

  • Chryssolouris G., Subramaniam V. (2001) Dynamic scheduling of manufacturing job shops using genetic algorithms. Journal of Intelligent Manufacturing 12(3): 281–293. doi:10.1023/A:1011253011638

    Article  Google Scholar 

  • Churchland P., Sejnowski T. (1996) The Computational Brain. MIT Press, Cambridge, MA

    Google Scholar 

  • Dahal K., Burt G., NcDonald J., Moyes A. (2001) A case study of scheduling storage tanks using a hybrid genetic algorithm. IEEE Transactions on Evolutionary Computation 5(3): 283–294

    Article  Google Scholar 

  • Göthe-Lundgren M., Lundgren J., Pearson J., i Linköping U., Mathematics D. O. (2002) An optimization model for refinery production scheduling. International Journal of Production Economics 78(3): 255–270. doi:10.1016/S0925-5273(00)00162-6

    Article  Google Scholar 

  • He Y., Hui C. (2007) Genetic algorithm based on heuristic rules for high-constrained large-size single-stage multi-product scheduling with parallel units. Chemical Engineering and Processing. Process Intensification 46(11): 1175–1191. doi:10.1016/j.cep.2007.02.023

    Article  Google Scholar 

  • Horn J. (1997) Multicriterion Decision Making. In: Back T., Fogel D. B., Michalewicz Z. (eds) Handbook of evolutionary computation. IOP Publ. Ltd and Oxford University Press, Oxford

    Google Scholar 

  • Jia H. Z., Nee A. Y. C., Fuh J. Y. H., Zhang Y. F. (2003) A modified genetic algorithm for distributed scheduling problems. Journal of Intelligent Manufacturing 14(3): 351–362. doi:10.1023/A:1024653810491

    Article  Google Scholar 

  • Joly M., Moro L., Pinto J. (2002) Planning and scheduling for petroleum refineries using mathematical programming. Brazilian Journal of Chemical Engineering 19: 207–228. doi:10.1590/S0104-66322002000200008

    Article  Google Scholar 

  • Jonathan, M., Zebulum, R., Patheco, M., & Vellasco, M. (2000). Multiobjective optimization techniques: a study of the energy minimization method and its application to the synthesis of ota amplifiers.

  • Kallrath J. (2002) Planning and scheduling in the process industry. OR-Spektrum 24(3): 219–250. doi:10.1007/s00291-002-0101-7

    Google Scholar 

  • Karuppiah, R., Furman, K. C., & Grossmann, I. E. (2008). Global optimization for scheduling refinery crude oil operations. Computers and Chemical Engineering (in press).

  • Khosla D., Gupta S., Saraf D. (2007) Multi-objective optimization of fuel oil blending using the jumping gene adaptation of genetic algorithm. Fuel Processing Technology 88(1): 51–63. doi:10.1016/j.fuproc.2006.08.009

    Article  Google Scholar 

  • Lee I., Sikora R., Shaw M. (1997) A genetic algorithm-based approach to flexible flow-line scheduling with variable lot sizes. Systems, Man and Cybernetics, Part B, IEEE Transactions on 27(1): 36–54

    Article  Google Scholar 

  • Luo Y.-C., Guignard M., Chen C.-H. (2001) A Hybrid approach for integer programming combining genetic algorithms, linear programming and ordinal optimization. Journal of Intelligent Manufacturing 12(5): 509–519. doi:10.1023/A:1012256521687

    Article  Google Scholar 

  • Martin C. (2009) A hybrid genetic algorithm/mathematical programming approach to the multi-family flowshop scheduling problem with lot streaming. Omega 37(1): 126–137. doi:10.1016/j.omega.2006.11.002

    Article  Google Scholar 

  • Moon C., Seo Y., Yun Y., Gen M. (2006) Adaptive genetic algorithm for advanced planning in manufacturing supply chain. Journal of Intelligent Manufacturing 17(4): 509–522. doi:10.1007/s10845-005-0010-0

    Article  Google Scholar 

  • Morad N., Zalzala A. M. S (1999) Genetic algorithms in integrated process planning and scheduling. Journal of Intelligent Manufacturing 10(2): 169–179. doi:10.1023/A:1008976720878

    Article  Google Scholar 

  • Moro L. (2003) Process technology in the petroleum refining industry—current situation and future trends. Computers & Chemical Engineering 27(8-9): 1303–1305. doi:10.1016/S0098-1354(03)00054-1

    Article  Google Scholar 

  • Moro L., Pinto J. (2004) Mixed-integer programming approach for short-term crude oil scheduling. Industrial and Engineering Chemistry Research 43(1): 85–94. doi:10.1021/ie030348d

    Article  Google Scholar 

  • Pinto J., Joly M., Moro L. (2000) Planning and scheduling models for refinery operations. Computers and Chemical Engineering 24(9-10): 2259–2276. doi:10.1016/S0098-1354(00)00571-8

    Article  Google Scholar 

  • Potts C., Kovalyov M. (2000) Scheduling with batching: A review. European Journal of Operational Research 120(2): 228–249. doi:10.1016/S0377-2217(99)00153-8

    Article  Google Scholar 

  • Sahdev, M. K., Jain, K. K., & Srivastava, P. (2004). Petroleum refinery planning and optmization using linear programming: Cheresources.

  • Simão, L., Dias, D., & Pacheco, M. (2007). Refinery scheduling optimization using genetic algorithms and cooperative coevolution.

  • Turkcan A., Akturk M. S. (2003) A problem space genetic algorithm in multiobjective optimization. Journal of Intelligent Manufacturing 14(3): 363–378. doi:10.1023/A:1024605927329

    Article  Google Scholar 

  • Wang H.-f., Wu K.-y (2003) Modeling and analysis for multi-period, multi-product and multi-resource production scheduling. Journal of Intelligent Manufacturing 14(3): 297–309. doi:10.1023/A:1024645608673

    Article  Google Scholar 

  • Wu N., Zhou M., Chu F. (2005) Short-term scheduling for refinery process: Bridging the gap between theory and applications. International Journal of Intelligent Control and Systems 10(2): 162–174

    Google Scholar 

  • Zebulum, R. S., Pacheco, M. A., & Vellasco, M. (1998). Synthesis of CMOS operational amplifiers through genetic algorithms. Proceedings of XI Brazillian symposium on integrated circuit design, pp. 125–128.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira, F., Hamacher, S. & Almeida, M.R. Process industry scheduling optimization using genetic algorithm and mathematical programming. J Intell Manuf 22, 801–813 (2011). https://doi.org/10.1007/s10845-009-0339-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-009-0339-x

Keywords

Navigation