Advertisement

Journal of Intelligent Manufacturing

, Volume 16, Issue 2, pp 189–205 | Cite as

A multiple-objective grouping genetic algorithm for the cell formation problem with alternative routings

  • E. Vin
  • P. De Lit
  • A. Delchambre
Article

Abstract

This paper addresses the cell formation problem with alternative part routings, considering machine capacity constraints. Given processes, machine capacities and quantities of parts to produce, the problem consists in defining the preferential routing for each part optimising the grouping of machines into manufacturing cells. The main objective is to minimise the inter-cellular traffic, while respecting machine capacity constraints. To solve this problem, the authors propose an integrated approach based on a multiple-objective grouping genetic algorithm for the preferential routing selection of each part (by solving an associated resource planning problem) and an integrated heuristic for the cell formation problem.

Keywords

Cell formation group technology alternative routings grouping genetic algorithm multiple objectives 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Askin, R., Selim, H., Vakharia, A. 1997A methodology for designing flexible cellular manufacturing systemsIIE transactions29599610Google Scholar
  2. Baykasoglu, A., Gindy, N. 2000MOCACEF 1.0: multiple objective capability based approach to form part-machine groups for cellular manufacturing applicationInternational Journal of Production Research3811331161Google Scholar
  3. Brandon, J. A. 1996Cellular Manufacturing: Integrating Technology and ManagementResearch Studies PressTaunton UKGoogle Scholar
  4. Brans, J.-P., Mareschal, B. 1994The PROMCALC & GAIA decision support system for multicriteria decision aidDecision support systems12297310Google Scholar
  5. Burbidge, J. L. 1963Production flows analysisThe Production Engineer42742752Google Scholar
  6. Burbidge, J. L. 1971Production flows analysisThe Production Engineer50139152Google Scholar
  7. Burbidge, J. L. 1975The Introduction to Group TechnologyJohn Wiley & SonsNew YorkGoogle Scholar
  8. Caux, C., Bruniaux, R., Pierreval, H. 2000Cell formation with alternative process plans and machine capacity constraints: a new combined approachInternational Journal of Production Economics64279284Google Scholar
  9. Chandrasekharan, M. P., Rajagopalan, R. 1986MOROC: an extension of rank order clustering for group technologyInternational Journal of Production Research2412211233Google Scholar
  10. DeWitte, J. 1980The use of similarity coefficient in production flows analysisInternational Journal of Production Research18503514Google Scholar
  11. De Lit, P., Falkenauer, E., Delchambre, A. 2000Grouping genetic algorithms: an efficient method to solve the cell formation problemMathematics and Computers in Simulation51257271Google Scholar
  12. Diallo, M., Pierreval, H., Quilliot, A. 1993Manufacturing cells design with flexible routing capability in presence of unreliable machinesInternational Journal of Production Research31175182Google Scholar
  13. Falkenauer, E. 1998Genetic algorithm and grouping problemsJohn Wiley & SonsChichester, UKGoogle Scholar
  14. Flanders, R. E. 1925Design Manufacture and Production Control of a Standard MachineTransactions of the American Society of Mechanical Engineers46691738Google Scholar
  15. Goldberg, D. E. 1989Genetic Algorithms in Search, Optimisation and Machine LearningAddison-WesleyReading, MAGoogle Scholar
  16. Gupta, T. 1993Design of manufacturing cells for flexible environment considering alternative routingInternational Journal of Production Research3112591273Google Scholar
  17. Harhalakis, G., Nagi, R., Proth, J.-M. 1990An efficient heuristic in manufacturing cell formation for group technology applicationsInternational Journal of Production Research28185198Google Scholar
  18. Holland, J. H. 1975Adaptation in Natural and Artificial SystemsUniversity of Michigan PressAnn Arbor, MIGoogle Scholar
  19. Irani, A., Huang, H. 2000Custom design of facilities layouts for multi-product facilities using layout modulesIEEE Transaction on Robotics and Automation16259267Google Scholar
  20. King, R. 1980Machine-component grouping in production flow analysis: approach using a rank order clustering algorithmInternational Journal of Production Research18213232Google Scholar
  21. Kusiak, A. 1987The generalised group technology conceptInternational Journal of Production Research25561569Google Scholar
  22. Kusiak, A, Chow, W. S. 1988Decomposition of manufacturing systemsIEEE Journal of Robotics and AutomationRA-4457471Google Scholar
  23. Logendran, R., Ramakrishna, P., Srikandarajah, C. 1994Tabu search-based heuristics for cellular manufaturing systems in the presence of alternative process plansInternational Journal of Production Research32273297Google Scholar
  24. Lee, M. K., Luong, H. S., Abhary, K. 1997A genetic algorithm based cell design considering alternitive routingsComputer-intergrated manufacturing systems1093107Google Scholar
  25. Mahesh, O., Srinivasan, G. 2002Incremental cell formation considering alternative machinesInternational Journal of Production Research4032913310Google Scholar
  26. Mitrofanov, S. P. (1966) The Scientific Principles of Group Technology. British Library Lending Division (translation of original Russian text)Google Scholar
  27. Mungwattana, A. (2000) Design of cellular manufacturing systems for dynamic and uncertain production requirements with presence of routing flexibility. PhD thesis, Blacksburg, VirginiaGoogle Scholar
  28. Mosier, C., Taube, L. 1985Weighted similarity measure heuristics for the group technology machine clustering problemOMEGA International Journal of Management Sciences13577583Google Scholar
  29. Nagi, R., Harhalakis, G., Proth, J.-M. 1990Multiple routings and capacity considerations in group technology applicationsInternational Journal of Production Research2822432257Google Scholar
  30. Rekiek, B., De Lit, P., Delchambre, A. 2002Hybrid assembly line design and user’s preferenceInternational Journal of Production Research4010951111Google Scholar
  31. Rekiek, B., De Lit, P., Pellichero, F., L’Eglise, T., Fouda, P., Falkenauer, E., Delchambre, A. 2001A multiple objective grouping genetic algorithm for assembly line designJournal of Intelligent Manufacturing12469485Google Scholar
  32. Sathiaraj, D., Sarker, B. R. 2002Common parts grouping heuristic: an iterative procedure to cell formationProduction planning & control13481489Google Scholar
  33. Shafer, S. M., Rogers, D. F. 1993Similarity and distance measures for cellular manufacture. Part IIInternational Journal of Production Research3113151326Google Scholar
  34. Srinivasan, G., Narendran, T. T. 1991Grafics: a non technological clusrtreing algorithm fgor group technology applicationInternational Journal of Production Research29463479Google Scholar
  35. Srinivasan, G. 1994A clustering algorithm for machine cell formation in group technology using minimum spanning treesInternational Journal of Production Research3221492158Google Scholar
  36. Vivekanand, P., Narendran, T. T. 1998Logical Cell Formation in FMS, using flexibility-based criteriaInternational Journal of Flexible manufacturing Systems10163181Google Scholar
  37. Yin, Y., Yasuda, K. 2002Manufacturing cells’ design in consideration of various production factorsInternational Journal of Production Research40885906Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.CAD/CAM DepartmentUniversité libre de Bruxelles (ULB)BrusselsBelgium

Personalised recommendations