Social recommender systems: techniques, domains, metrics, datasets and future scope

Abstract

With the evolution of social media, an enormous amount of information is shared every day. Recommender systems contribute significantly in handling big data and presenting relevant information, services and items to people. A substantial number of recommender system algorithms based on social media data have been proposed and applied to numerous domains in the literature. This paper presents a state-of-the-art survey of existing techniques of social recommender systems. We present different domains where the existing systems have been experimented. We also present a tabular representation of different metrics used by these papers. We discuss some frequently used datasets of these systems. Lastly, we discuss some of the future works in this area. The main aim of this paper is to provide a concise review of published papers to assist potential researchers in this field to devise new techniques.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

Notes

  1. 1.

    http://www.dai-labor.de/camra2010/datasets/

References

  1. Aguilar, J., Valdiviezo-Díaz, P., Riofrio, G. (2017). A general framework for intelligent recommender systems. Applied Computing and Informatics, 13(2), 147–160.

    Article  Google Scholar 

  2. Ahmadian, S., Joorabloo, N., Jalili, M., Meghdadi, M., Afsharchi, M., Ren, Y. (2018a). A temporal clustering approach for social recommender systems. In 2018 IEEE/ACM International conference on advances in social networks analysis and mining (ASONAM) (pp. 1139–1144): IEEE.

  3. Ahmadian, S., Meghdadi, M., Afsharchi, M. (2018b). A social recommendation method based on an adaptive neighbor selection mechanism. Information Processing & Management, 54(4), 707–725.

    Article  Google Scholar 

  4. Atanassov, K.T. (1999). Intuitionistic fuzzy sets. In Intuitionistic fuzzy sets (pp. 1–137): Springer.

  5. Bao, J., Zheng, Y., Wilkie, D., Mokbel, M. (2015). Recommendations in location-based social networks: a survey. GeoInformatica, 19(3), 525–565.

    Article  Google Scholar 

  6. Capdevila, J., Arias, M., Arratia, A. (2016). GeoSRS: A hybrid social recommender system for geolocated data. Information Systems, 57, 111–128.

    Article  Google Scholar 

  7. Carrer-Neto, W., Hernández-Alcaraz, M.L., Valencia-García, R., García-Sánchez, F. (2012). Social knowledge-based recommender system. application to the movies domain. Expert Systems with Applications, 39(12), 10,990–11,000.

    Article  Google Scholar 

  8. Christensen, I., Schiaffino, S., Armentano, M. (2016). Social group recommendation in the tourism domain. Journal of Intelligent Information Systems, 47 (2), 209–231.

    Article  Google Scholar 

  9. Dang, Q.V., & Ignat, C.L. (2017). dTrust: a simple deep learning approach for social recommendation. In The 3Rd IEEE International Conference on Collaboration and Internet Computing (CIC-17). United States: San Jose.

  10. Davoodi, E., Kianmehr, K., Afsharchi, M. (2013). A semantic social network-based expert recommender system. Applied Intelligence, 39(1), 1–13.

    Article  Google Scholar 

  11. Deng, S., Huang, L., Xu, G., Wu, X., Wu, Z. (2017). On deep learning for trust-aware recommendations in social networks. IEEE Transactions on Neural Networks and Learning Systems, 28(5), 1164–1177.

    Article  Google Scholar 

  12. Fan, W., Li, Q., Cheng, M. (2018). Deep modeling of social relations for recommendation. In Thirty-Second AAAI Conference on Artificial Intelligence.

  13. Fan, W., Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., Yin, D. (2019). Graph neural networks for social recommendation. arXiv:190207243.

  14. Felfernig, A., Jeran, M., Ninaus, G., Reinfrank, F., Reiterer, S. (2013). Toward the next generation of recommender systems: applications and research challenges. In Multimedia services in intelligent environments (pp. 81–98): Springer.

  15. Felfernig, A., Boratto, L., Stettinger, M., Tkalčič, M. (2018). Personality, emotions, and group dynamics. In Group Recommender Systems, Springer International Publishing (pp. 157–167) Cham. https://doi.org/10.1007/978-3-319-75067-5_9.

  16. Frikha, M., Mhiri, M., Gargouri, F. (2015). Designing A user interest ontology-driven social recommender system: Application for tunisian tourism. In Trends in practical applications of agents, Multi-Agent Systems and Sustainability (pp. 159–166): Springer.

  17. Frikha, M., Mhiri, M.B.A., Gargouri, F., et al. (2017). Social trust based semantic tourism recommender system: a case of medical tourism in tunisia. European Journal of Tourism Research, 17, 59–82.

    Google Scholar 

  18. García-Sánchez, F., García-Díaz, J.A., Gómez-Berbís, J.M., Valencia-García, R. (2018). Ontology-based advertisement recommendation in social networks. In International Symposium on Distributed Computing and Artificial Intelligence (pp. 36–44): Springer.

  19. Geng, X., Zhang, H., Bian, J., Chua, T.S. (2015). Learning image and user features for recommendation in social networks. In 2015 IEEE International Conference on Computer Vision (ICCV) (pp. pp 4274–4282). https://doi.org/10.1109/ICCV.2015.486.

  20. Ghasemi, T. (2012). Fuzzy thesauri recommendation system for web 2.0 social networks.

  21. Golbeck, J. (2006a). Combining provenance with trust in social networks for semantic web content filtering. In International Provenance and Annotation Workshop (pp. 101–108): Springer.

  22. Golbeck, J., Hendler, J., et al. (2006b). Filmtrust: Movie recommendations using trust in web-based social networks. In Proceedings of the IEEE Consumer communications and networking conference (pp. 282–286): Citeseer.

  23. Gottapu, R.D., & Monangi, L.V.S. (2017). Point-of-interest recommender system for social groups. Procedia Computer Science, 114, 159–164. https://doi.org/10.1016/j.procs.2017.09.020, complex Adaptive Systems Conference with Theme: Engineering Cyber Physical Systems, CAS October 30 November 1, 2017, Chicago, Illinois, USA.

    Article  Google Scholar 

  24. Guan, C., Fung, Y.K.K., Yue, Y. (2018). Towards a Personalized Item Recommendation Approach in Social Tagging Systems Using Intuitionistic Fuzzy DBSCAN. In 2018 10th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC) (pp. vol. 1, pp 361–364): IEEE.

  25. Guo, G., Zhang, J., Yorke-Smith, N. (2015). Leveraging multiviews of trust and similarity to enhance clustering-based recommender systems. Knowledge-Based Systems, 74, 14–27.

    Article  Google Scholar 

  26. Gurini, D.F., Gasparetti, F., Micarelli, A., Sansonetti, G. (2018). Temporal people-to-people recommendation on social networks with sentiment-based matrix factorization. Future Generation Computer Systems, 78, 430–439.

    Article  Google Scholar 

  27. Guy I. (2015). Social recommender systems. In Recommender systems handbook (pp. 511–543): Springer.

  28. Huang, C.L., Yeh, P.H., Lin, C.W., Wu, D.C. (2014). Utilizing user tag-based interests in recommender systems for social resource sharing websites. Knowledge-Based Systems, 56, 86–96.

    Article  Google Scholar 

  29. Hussein, T., Linder, T., Gaulke, W., Ziegler, J. (2014). Hybreed: a software framework for developing context-aware hybrid recommender systems. User Modeling and User-Adapted Interaction, 24(1-2), 121–174.

    Article  Google Scholar 

  30. Jamali, M., & Ester, M. (2010). A matrix factorization technique with trust propagation for recommendation in social networks. In Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys ’10 (pp. 135–142). New York: ACM. https://doi.org/10.1145/1864708.1864736.

  31. Jilke, S., Van Ryzin, G.G., Van de Walle, S. (2016). Responses to decline in marketized public services: an experimental evaluation of choice overload. Journal of Public Administration Research and Theory, 26(3), 421–432.

    Article  Google Scholar 

  32. Katarya, R., & Verma, O.P. (2017). An effective web page recommender system with fuzzy c-mean clustering. Multimedia Tools and Applications, 76(20), 21,481–21,496.

    Article  Google Scholar 

  33. Kim, N., & Kim, W. (2018). Do your social media lead you to make social deal purchases? Consumer-generated social referrals for sales via social commerce. International Journal of Information Management, 39, 38–48. https://doi.org/10.1016/j.ijinfomgt.2017.10.006.

    Article  Google Scholar 

  34. Knijnenburg, B.P., Bostandjiev, S., O’Donovan, J., Kobsa, A. (2012). Inspectability and control in social recommenders. In Proceedings of the Sixth ACM Conference on Recommender Systems, RecSys ’12 (pp. 43–50). New York: ACM.. https://doi.org/10.1145/2365952.2365966

  35. Konstas, I., Stathopoulos, V., Jose, J.M. (2009). On social networks and collaborative recommendation. In Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval (pp. 195–202): ACM.

  36. Koren, Y. (2010). Collaborative filtering with temporal dynamics. Communications of the ACM, 53(4), 89–97.

    Article  Google Scholar 

  37. Li, H., Wu, D., Tang, W., Mamoulis, N. (2015). Overlapping community regularization for rating prediction in social recommender systems. In Proceedings of the 9th ACM Conference on Recommender Systems (pp. 27–34): ACM.

  38. Liu, N.N., He, L., Zhao, M. (2013). Social temporal collaborative ranking for context aware movie recommendation. ACM Transactions on Intelligent Systems and Technology (TIST), 4(1), 15.

    Google Scholar 

  39. Ma, H., Yang, H., Lyu, M.R., King, I. (2008). SoRec: Social recommendation using probabilistic matrix factorization. In Proceedings of the 17th ACM Conference on Information and Knowledge Management, CIKM ’08 (pp. 931–940). New York: ACM. https://doi.org/10.1145/1458082.1458205.

  40. Ma, H., King, I., Lyu, M.R. (2009a). Learning to recommend with social trust ensemble. In Proceedings of the 32Nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’09 (pp. 203–210). New York: ACM. https://doi.org/10.1145/1571941.1571978.

  41. Ma, H., Lyu, M.R., King, I. (2009b). Learning to recommend with trust and distrust relationships. In Proceedings of the Third ACM Conference on Recommender Systems, RecSys ’09 (pp. 189–196). New York: ACM. https://doi.org/10.1145/1639714.1639746.

  42. Ma, H., Zhou, D., Liu, C., Lyu, M.R., King, I. (2011). Recommender systems with social regularization. In Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, WSDM ’11 (pp. 287–296). New York: ACM. https://doi.org/10.1145/1935826.1935877.

  43. Massa, P., & Avesani, P. (2007). Trust metrics on controversial users : Balancing between tyranny of the majority and echo chambers. International Journal on Semantic Web and Information Systems, 3(1), 39–64.

    Article  Google Scholar 

  44. Pan, R., Dolog, P., Xu, G. (2012). KNN-based clustering for improving social recommender systems. In International Workshop on Agents and Data Mining Interaction (pp. 115–125): Springer.

  45. Pham, M.C., Cao, Y., Klamma, R., Jarke, M. (2011). A clustering approach for collaborative filtering recommendation using social network analysis. Journal of Universal Computer Science, 17(4), 583–604.

    Google Scholar 

  46. Porcel, C., Martinez-Cruz, C., Bernabé-Moreno, J., Tejeda-Lorente, Á., Herrera-Viedma, E. (2015). Integrating ontologies and fuzzy logic to represent user-trustworthiness in recommender systems. Procedia Computer Science, 55, 603–612.

    Article  Google Scholar 

  47. Qin, D., Zhou, X., Chen, L., Huang, G., Zhang, Y. (2018). Dynamic connection-based social group recommendation. IEEE Transactions on Knowledge and Data Engineering, 1–14. https://doi.org/10.1109/TKDE.2018.2879658.

  48. Quijano-Sanchez, L., Recio-Garcia, J.A., Diaz-Agudo, B., Jimenez-Diaz, G. (2013). Social factors in group recommender systems. ACM Transactions on Intelligent Systems and Technology (TIST), 4(1), 8.

    Google Scholar 

  49. Rana, C., & Jain, S.K. (2015). A study of the dynamic features of recommender systems. Artificial Intelligence Review, 43(1), 141–153. https://doi.org/10.1007/s10462-012-9359-6.

    Article  Google Scholar 

  50. Ricci, F., Rokach, L., Shapira, B. (2015). Recommender systems: Introduction and challenges. In Ricci, F., Rokach, L., Shapira, B. (Eds.) Recommender Systems Handbook (pp. 1–34). Boston: Springer. https://doi.org/10.1007/978-1-4899-7637-6_1.

  51. Sansonetti, G. (2019). Point of interest recommendation based on social and linked open data. Personal and Ubiquitous Computing, 23(2), 199–214. https://doi.org/10.1007/s00779-019-01218-z.

    Article  Google Scholar 

  52. Schall, D. (2015). Overview social recommender system. In Social Network-Based Recommender Systems (pp. 1–6): Springer. https://doi.org/10.1007/978-3-319-22735-1_1.

  53. Sedhain, S., Menon, A.K., Sanner, S., Xie, L. (2015). Autorec: Autoencoders meet collaborative filtering. In Proceedings of the 24th International Conference on World Wide Web (pp. 111–112): ACM.

  54. Sellami, K., Ahmed-Nacer, M., Tiako, P. (2014). From social network to semantic social network in recommender system. arXiv:14073392.

  55. Shani, G., & Gunawardana, A. (2011). Evaluating recommendation systems. In Recommender systems handbook (pp. 257–297): Springer.

  56. Shen, Y., Lv, T., Chen, X., Wang, Y. (2016). A collaborative filtering based social recommender system for e-commerce. International Journal of Simulation: Systems, Science and Technology, 17(22), 91–96.

    Google Scholar 

  57. Sheugh, L., & Alizadeh, H.S. (2015). Merging similarity and trust based social networks to enhance the accuracy of trust-aware recommender systems. Journal of Computer & Robotics, 8(2), 43–51.

    Google Scholar 

  58. Shokeen, J., & Rana, C. (2017). Fuzzy sets, advanced fuzzy sets and hybrids. In 2017 International conference on energy, Communication, Data Analytics and Soft Computing (ICECDS) (pp. 2538–2542). https://doi.org/10.1109/ICECDS.2017.8389911.

  59. Shokeen, J., & Rana, C. (2018a). A review on the dynamics of social recommender systems. International Journal of Web Engineering and Technology, 13(3), 255–276.

    Article  Google Scholar 

  60. Shokeen, J., & Rana, C. (2018b). A study on trust-aware social recommender systems. In A study on Trust-aware Social Recommender Systems (pp. 4268–4272); IEEE.

  61. Shokeen, J., & Rana, C. (2019a). An application-oriented review of deep learning in recommender systems. International Journal of Intelligent Systems and Applications, 11(5), 46–54. https://doi.org/10.5815/ijisa.2019.05.06.

    Article  Google Scholar 

  62. Shokeen, J., & Rana, C. (2019b). A study on features of social recommender systems. Artificial Intelligence Review. https://doi.org/10.1007/s10462-019-09684-w.

  63. Shokeen, J., Rana, C., Sehrawat, H. (2019c). A novel approach for community detection using the label propagation technique. In Integrated intelligent computing, Communication and Security (pp. 127–132): Springer.

  64. Sulieman, D., Malek, M., Kadima, H., Laurent, D. (2016). Toward social-semantic recommender systems. International Journal of Information Systems and Social Change (IJISSC), 7(1), 1–30.

    Article  Google Scholar 

  65. Sun, Z., Han, L., Huang, W., Wang, X., Zeng, X., Wang, M., Yan, H. (2015). Recommender systems based on social networks. Journal of Systems and Software, 99, 109–119. https://doi.org/10.1016/j.jss.2014.09.019.

    Article  Google Scholar 

  66. Tang, J., Hu, X., Liu, H. (2013). Social recommendation: a review. Social Network Analysis and Mining, 3(4), 1113–1133. https://doi.org/10.1007/s13278-013-0141-9.

    Article  Google Scholar 

  67. Tang, L., Cai, D., Duan, Z., Ma, J., Han, M., Wang, H. (2019). Discovering travel community for POI recommendation on location-based social networks. Complexity 2019.

  68. Travers, J., & Milgram, S. (1969). An experimental study of the small world problem. Sociometry, 32, 425–443.

    Article  Google Scholar 

  69. Unger, M., Bar, A., Shapira, B., Rokach, L. (2016). Towards latent context-aware recommendation systems. Knowledge-Based Systems, 104, 165–178.

    Article  Google Scholar 

  70. Villavicencio, C., Schiaffino, S., Diaz-Pace, J.A., Monteserin, A. (2019). Group recommender systems: a multi-agent solution. Knowledge-Based Systems, 164, 436–458.

    Article  Google Scholar 

  71. Wang, C., & Blei, D.M. (2011). Collaborative topic modeling for recommending scientific articles. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’11 (pp. 448–456). New York: ACM. https://doi.org/10.1145/2020408.2020480.

  72. Wang, Z., Zhu, W., Cui, P., Sun, L., Yang, S. (2013). Social media recommendation. In Ramzan, N., van Zwol, R., Lee, J.S., Clüver, K., Hua, X.S. (Eds.) Social Media Retrieval (pp. 23–42). London: Springer. https://doi.org/10.1007/978-1-4471-4555-4_2.

  73. Wang, H., Wang, N., Yeung, D.Y. (2015a). Collaborative deep learning for recommender systems. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1235–1244): ACM.

  74. Wang, X., He, X., Nie, L., Chua, T.S. (2017). Item silk road: Recommending items from information domains to social users. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’17 (pp. pp 185–194). New York: CM. https://doi.org/10.1145/3077136.3080771.

  75. Wang, Z., Liao, J., Cao, Q., Qi, H., Wang, Z. (2015b). Friendbook: a semantic-based friend recommendation system for social networks. IEEE Transactions on Mobile Computing, 14, 538–551.

    Article  Google Scholar 

  76. Xu, Z., Lukasiewicz, T., Chen, C., Miao, Y., Meng, X. (2017). Tag-aware personalized recommendation using a hybrid deep model. In AAAI Press/International Joint Conferences on Artificial Intelligence.

  77. Yang, X., Steck, H., Guo, Y., Liu, Y. (2012a). On top-k recommendation using social networks. In Proceedings of the sixth ACM conference on Recommender systems (pp. 67–74): ACM.

  78. Yang, X., Steck, H., Liu, Y. (2012b). Circle-based recommendation in online social networks. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’12 (pp. 1267–1275). New York: ACM. https://doi.org/10.1145/2339530.2339728.

  79. Yang, X., Guo, Y., Liu, Y., Steck, H. (2014). A survey of collaborative filtering based social recommender systems. Computer Communications, 41, 1–10. https://doi.org/10.1016/j.comcom.2013.06.009.

    Article  Google Scholar 

  80. Ying, H., Chen, L., Xiong, Y., Wu, J. (2016). Collaborative deep ranking: a hybrid pair-wise recommendation algorithm with implicit feedback. In Pacific-Asia Conference on Knowledge Discovery and Data Mining (pp. 555–567): Springer.

  81. Zadeh, L. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X.

    MathSciNet  MATH  Article  Google Scholar 

  82. Zhang, D., Hsu, C.H., Chen, M., Chen, Q., Xiong, N., Lloret, J. (2014). Cold-start recommendation using bi-clustering and fusion for large-scale social recommender systems. IEEE Transactions on Emerging Topics in Computing, 2(2), 239–250.

    Article  Google Scholar 

  83. Zhang, S., Yao, L., Sun, A. (2017). Deep learning based recommender system: a survey and new perspectives. CoRR arXive:1707.07435.

  84. Zhao, P.P., Zhu, H.F., Liu, Y., Zhou, Z.T., Li, Z.X., Xu, J., Zhao, L., Sheng, V. (2018). A generative model approach for geo-social group recommendation. Journal of Computer Science and Technology, 33, 727–738. https://doi.org/10.1007/s11390-018-1852-1.

    Article  Google Scholar 

  85. Zheng, Y., Mobasher, B., Burke, R.D. (2013). The role of emotions in context-aware recommendation. In ACM Conference on Recommender Systems, RecSys ’13 (pp. 21–28). Hong Kong.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jyoti Shokeen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shokeen, J., Rana, C. Social recommender systems: techniques, domains, metrics, datasets and future scope. J Intell Inf Syst 54, 633–667 (2020). https://doi.org/10.1007/s10844-019-00578-5

Download citation

Keywords

  • Recommender system
  • Social media
  • Collaborative filtering
  • Deep learning
  • Social networks
  • Social recommender system