Advertisement

StreamPref: a query language for temporal conditional preferences on data streams

  • Marcos Roberto RibeiroEmail author
  • Maria Camila N. Barioni
  • Sandra de Amo
  • Claudia Roncancio
  • Cyril Labbé
Article
  • 26 Downloads

Abstract

Over recent years, several studies regarding preference queries over data streams have been developed in database and artificial intelligence research fields. Preference queries are useful in many decision making application areas, such as e-commerce, financial analysis, and content personalization. In this article, we explore new aspects of temporal conditional preference queries (tcp-queries) for the StreamPref query language. Tcp-queries allow the user to express how past instants of a data stream can influence the preference of a user at a present instant. In order to increase the utility of the StreamPref query language, we propose herein new operators that allow dealing with subsequences and filtering of sequences by length. To validate our proposal we present a detailed complexity analysis and an extensive set of experiments with synthetic and real datasets, which corroborate the efficiency of the algorithms and the utility of the new operators.

Keywords

Data streams Preference queries Temporal preferences Query language Operators 

Notes

Acknowledgements

The authors would like to thank the Research Agencies CNPq, CAPES and FAPEMIG for supporting this work.

References

  1. Arasu, A., Babu, S., Widom, J. (2006). The CQL continuous query language: semantic foundations and query execution. The VLDB Journal, 15(2), 121–142.CrossRefGoogle Scholar
  2. Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Datar, M., Ito, K., Motwani, R., Srivastava, U., Widom, J. (2016). STREAM: the Stanford data stream management system (pp. 317–336). Berlin: Springer.Google Scholar
  3. Börzsönyi, S., Kossmann, D., Stocker, K. (2001). The skyline operator. In ICDE (pp. 421–430). Heidelberg.Google Scholar
  4. Boutilier, C., Brafman, R.I., Hoos, H.H., Poole, D. (1999). Reasoning with conditional ceteris paribus preference statements. In Conference on Uncertainty in Artificial Intelligence (UAI) (pp. 71–80). Stockholm.Google Scholar
  5. Brafman, R.I., & Domshlak, C. (2002). Introducing variable importance tradeoffs into cp-nets. In Conference on Uncertainty in Artificial Intelligence (UAI) (pp. 69–76). Edmonton.Google Scholar
  6. Brafman, R.I., Domshlak, C., Shimony, S.E. (2006). On graphical modeling of preference and importance. JAIR, 25, 389–424.MathSciNetCrossRefzbMATHGoogle Scholar
  7. Chan, C.Y., Jagadish, H.V., Tan, K.L., Tung, A.K.H., Zhang, Z. (2006). Finding k-dominant skylines in high dimensional space. In ACM SIGMOD international conference on management of data (pp. 503–514). Chicago.Google Scholar
  8. Chomicki, J. (2003). Preference formulas in relational queries. ACM TODS, 28 (4), 427–466.MathSciNetCrossRefGoogle Scholar
  9. de Amo, S., & Bueno, M.L.P. (2011). Continuous processing of conditional preference queries. In SBBD. Florianópolis.Google Scholar
  10. de Amo, S., & Giacometti, A. (2007). Temporal conditional preferences over sequences of objects. In ICTAI (pp. 246–253). Patras.Google Scholar
  11. de Amo, S., & Ribeiro, M.R. (2009). CPref-SQL: a query language supporting conditional preferences. In ACM SAC (pp. 1573–1577). Honolulu.Google Scholar
  12. Kießling, W. (2002). Foundations of preferences in database systems. In International conference on very large data bases (VLDB) (pp. 311–322). Hong Kong.Google Scholar
  13. Kießling, W., & Köstler, G. (2002). Preference SQL: design, implementation, experiences. In VLDB (pp. 990–1001). Hong Kong.Google Scholar
  14. Kontaki, M., Papadopoulos, A.N., Manolopoulos, Y. (2008). Continuous top-k dominating queries in subspaces. In Panhellenic conference on informatics (PCI) (pp. 31–35). Samos: IEEE.Google Scholar
  15. Kontaki, M., Papadopoulos, A.N., Manolopoulos, Y. (2012). Continuous top-k dominating queries. IEEE Transactions on Knowledge and Data Engineering (TKDE), 24(5), 840–853.CrossRefGoogle Scholar
  16. Lee, Y.W., Lee, K.Y., Kim, M.H. (2013). Efficient processing of multiple continuous skyline queries over a data stream. Information Sciences, 221, 316–337.CrossRefGoogle Scholar
  17. Lin, X., Yuan, Y., Wang, W., Lu, H. (2005). Stabbing the sky: efficient skyline computation over sliding windows. In ICDE (pp. 502–513). Tokyo.Google Scholar
  18. Pereira, F.S.F, & de Amo, S. (2010). Evaluation of conditional preference queries. JIDM, 1(3), 503–518.Google Scholar
  19. Petit, L., Labbé, C., Roncancio, C. (2010). An algebric window model for data stream management. In ACM MobiDE (pp. 17–24). Indianapolis.Google Scholar
  20. Petit, L, de Amo, S., Roncancio, C., Labbé, C. (2012). Top-k context-aware queries on streams. In DEXA (pp. 397–411). Vienna.Google Scholar
  21. Ribeiro, M.R., Pereira, F.S.F., Dias, V.V.S. (2016). Efficient algorithms for processing preference queries. In ACM SAC (pp. 972–979). Pisa.Google Scholar
  22. Ribeiro, M.R., Barioni, M.C.N, de Amo, S., Roncancio, C., Labbé, C. (2017a). Reasoning with temporal preferences over data streams. In FLAIRS. Marco Island.Google Scholar
  23. Ribeiro, M.R., Barioni, M.C.N, de Amo, S., Roncancio, C., Labbé, C. (2017b). Soccer2014ds: a dataset containing player events from the 2014 world cup. In Brazilian symposium on databases, dataset showcase workshop (pp. 278–285). Uberlandia.Google Scholar
  24. Ribeiro, M.R., Barioni, M.C.N, de Amo, S., Roncancio, C., Labbé, C. (2017c). Temporal conditional preference queries on streams. In International conference on database and expert systems applications (DEXA). Lyon.Google Scholar
  25. Santoso, B.J., & Chiu, G.M. (2014). Close dominance graph: an efficient framework for answering continuous top-dominating queries. IEEE Transactions on Knowledge and Data Engineering (TKDE), 26(8), 1853–1865.CrossRefGoogle Scholar
  26. Tao, Y., & Papadias, D. (2006). Maintaining sliding window skylines on data streams. IEEE TKDE, 18(3), 377–391.Google Scholar
  27. Wilson, N. (2004). Extending cp-nets with stronger conditional preference statements. In AAAI national conference (pp. 735–741). San Jose.Google Scholar
  28. Wilson, N. (2011). Computational techniques for a simple theory of conditional preferences. Artificial Intelligence Journal, 175(7–8), 1053–1091.MathSciNetCrossRefzbMATHGoogle Scholar
  29. Yiu, M.L., & Mamoulis, N. (2007). Efficient processing of top-k dominating queries on multi-dimensional data. In International conference on very large data bases (VLDB) (pp. 483–494). Vienna.Google Scholar
  30. Yiu, M.L., & Mamoulis, N. (2009). Multi-dimensional top-k dominating queries. The VLDB Journal, 18(3), 695–718.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto Federal de Minas GeraisBambuíBrazil
  2. 2.Universidade Federal de UberlândiaUberlândiaBrazil
  3. 3.Université Grenoble Alpes, CNRS, Grenoble INP, LIGGrenobleFrance

Personalised recommendations