Journal of Intelligent Information Systems

, Volume 51, Issue 2, pp 301–337 | Cite as

Analysis of medications change in Parkinson’s disease progression data

  • Anita ValmarskaEmail author
  • Dragana Miljkovic
  • Nada Lavrač
  • Marko Robnik-Šikonja


Parkinson’s disease is a neurodegenerative disorder that affects people worldwide. Careful management of patient’s condition is crucial to ensure the patient’s independence and quality of life. This is achieved by personalized treatment based on individual patient’s symptoms and medical history. The aim of this study is to determine patient groups with similar disease progression patterns coupled with patterns of medications change that lead to the improvement or decline of patients’ quality of life symptoms. To this end, this paper proposes a new methodology for clustering of short time series of patients’ symptoms and prescribed medications data, and time sequence data analysis using skip-grams to monitor disease progression. The results demonstrate that motor and autonomic symptoms are the most informative for evaluating the quality of life of Parkinson’s disease patients. We show that Parkinson’s disease patients can be divided into clusters ordered in accordance with the severity of their symptoms. By following the evolution of symptoms for each patient separately, we were able to determine patterns of medications change which can lead to the improvement or worsening of the patients’ quality of life.


Parkinson’s disease Quality of life indicators Clustering Short time series Skip-grams 



This work was supported by the PD_manager and HBP SGA1 projects, funded within the EU Framework Program for Research and Innovation Horizon 2020 grants 643706 and 720270, respectively. We acknowledge also the support of the Slovenian Research Agency (research core funding P2-0103 and P2-0209).

Data used in the preparation of this article were obtained from the Parkinson’s Progression Markers Initiative (PPMI) ( For up-to-date information on the study, visit PPMI—a public-private partnership—is funded by the Michael J. Fox Foundation for Parkinson’s Research and funding partners. Corporate Funding Partners: AbbVie, Avid Radiopharmaceuticals, Biogen, BioLegend, Bristol-Myers Squibb, GE Healthcare, GLAXOSMITHKLINE (GSK), Eli Lilly and Company, Lundbeck, Merck, Meso Scale Discovery (MSD), Pfizer Inc, Piramal Imaging, Roche, Sanofi Genzyme, Servier, Takeda, Teva, UCB. Philanthropic Funding Partners: Golub Capital. List of funding partners can be also found at


  1. Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. In ACM sigmod record (Vol. 22, pp. 207–216). ACM.Google Scholar
  2. Appice, A. (2017). Towards mining the organizational structure of a dynamic event scenario. Journal of Intelligent Information Systems, 1–29.Google Scholar
  3. Appice, A., & Malerba, D. (2016). A co-training strategy for multiple view clustering in process mining. IEEE Trans Services Computing, 9(6), 832–845.CrossRefGoogle Scholar
  4. Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J.M., & Perona, I. (2013). An extensive comparative study of cluster validity indices. Pattern Recognition, 46(1), 243–256.CrossRefGoogle Scholar
  5. Bence, J.R. (1995). Analysis of short time series: correcting for autocorrelation. Ecology, 76(2), 628–639.CrossRefGoogle Scholar
  6. Bezdek, J.C. (1981). Pattern recognition with fuzzy objective function algorithms. New York: Plenum Press.CrossRefzbMATHGoogle Scholar
  7. Blum, A., & Mitchell, T. (1998). Combining labeled and unlabeled data with co-training. In Proceedings of the eleventh annual conference on computational learning theory, ACM, New York, NY, USA, COLT’ (Vol. 98, pp. 92–100).Google Scholar
  8. Broder, A.Z., Glassman, S.C., Manasse, M.S., & Zweig, G. (1997). Syntactic clustering of the web. Computer Networks and ISDN Systems, 29(8-13), 1157–1166.CrossRefGoogle Scholar
  9. Cai, X., Nie, F., & Huang, H. (2013). Multi-view k-means clustering on big data. In Proceedings of the 23rd international joint conference on artificial intelligence IJCAI 2013, Beijing, China, August 3-9, 2013 (pp. 2598–2604).Google Scholar
  10. Caliński, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics-theory and Methods, 3(1), 1–27.MathSciNetCrossRefzbMATHGoogle Scholar
  11. Ceravolo, R., Rossi, C., Kiferle, L., & Bonuccelli, U. (2010). Nonmotor symptoms in Parkinson’s disease: the dark side of the moon. Future Neurology, 5(6), 851–871.CrossRefGoogle Scholar
  12. Chaudhuri, K., Kakade, S.M., Livescu, K., & Sridharan, K. (2009). Multi-view clustering via canonical correlation analysis. In Proceedings of the 26th annual international conference on machine learning, ICML 2009 (pp. 129–136).Google Scholar
  13. Choi, E., Schuetz, A., Stewart, W.F., & Sun, J. (2017). Using recurrent neural network models for early detection of heart failure onset. Journal of the American Medical Informatics Association, 24(2), 361–370.Google Scholar
  14. Cleuziou, G., Exbrayat, M., Martin, L., & Sublemontier, J. (2009). CoFKM: a centralized method for multiple-view clustering. In Proceedings of the ninth IEEE international conference on data mining (ICDM 2009), miami, florida, USA, 6-9 December 2009 (pp. 752–757).Google Scholar
  15. Dalrymple-Alford, J., MacAskill, M., Nakas, C., Livingston, L., Graham, C., Crucian, G., Melzer, T., Kirwan, J., Keenan, R., Wells, S., & et al. (2010). The moCA: well-suited screen for cognitive impairment in Parkinson disease. Neurology, 75(19), 1717–1725.CrossRefGoogle Scholar
  16. Davies, D.L., & Bouldin, D.W. (1979). A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1(2), 224–227.CrossRefGoogle Scholar
  17. De Alba, E., Mendoza, M., et al. (2007). Bayesian forecasting methods for short time series. The International Journal of Applied Forecasting, 8, 41–44.Google Scholar
  18. De Vine, L., Zuccon, G., Koopman, B., Sitbon, L., & Bruza, P. (2014). Medical semantic similarity with a neural language model. In Proceedings of the 23rd ACM international conference on conference on information and knowledge management (pp. 1819–1822). ACM.Google Scholar
  19. Dorsey, E., Constantinescu, R., Thompson, J., Biglan, K., Holloway, R., Kieburtz, K., Marshall, F., Ravina, B., Schifitto, G., Siderowf, A., & et al. (2007). Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology, 68(5), 384–386.CrossRefGoogle Scholar
  20. Ernst, J., & Bar-Joseph, Z. (2006). STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics, 7(1), 191.CrossRefGoogle Scholar
  21. Ernst, J., Nau, G.J., & Bar-Joseph, Z. (2005). Clustering short time series gene expression data. Bioinformatics, 21(suppl 1), i159–i168.CrossRefGoogle Scholar
  22. Ester, M., Kriegel, H.P., Sander, J., Xu, X., & et al. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In KDD (Vol. 96, pp. 226–231).Google Scholar
  23. European Parkinson’s Disease Association. (2016)., accessed: 2016/07/01.
  24. Foltynie, T., Brayne, C., & Barker, R.A. (2002). The heterogeneity of idiopathic Parkinson’s disease. Journal of Neurology, 249(2), 138–145.CrossRefGoogle Scholar
  25. Gamberger, D., & Lavraċ, N. (2002). Expert-guided subgroup discovery: methodology and application. Journal of Artificial Intelligence Research, 17, 501–527.CrossRefzbMATHGoogle Scholar
  26. Gatsios, D., Rigas, G., Miljkovic, D., Seljak, B.K., & Bohanec, M. (2016). m-health platform for Parkinson’s disease management. In Proceedings of 18th international conference on biomedicine and health informatics CBHI.Google Scholar
  27. Gil, D., & Johnson, M. (2009). Diagnosing Parkinson by using artificial neural networks and support vector machines. Global Journal of Computer Science and Technology, 9(4), 63–71.Google Scholar
  28. Goetz, C.G., Tilley, B.C., Shaftman, S.R., Stebbins, G.T., Fahn, S., Martinez-Martin, P., Poewe, W., Sampaio, C., Stern, M.B., Dodel, R., & et al. (2008). Movement Disorder Society-sponsored Revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Movement Disorders, 23(15), 2129–2170.CrossRefGoogle Scholar
  29. Goetz, C.G., Luo, S., Wang, L., Tilley, B.C., LaPelle, N.R., & Stebbins, G.T. (2015). Handling missing values in the MDS-UPDRS. Movement Disorders, 30 (12), 1632–1638.CrossRefGoogle Scholar
  30. Greene, D., Doyle, D., & Cunningham, P. (2010). Tracking the evolution of communities in dynamic social networks. In Advances in social networks analysis and mining (ASONAM), 2010 (pp. 176–183). IEEE.Google Scholar
  31. Guthrie, D., Allison, B., Liu, W., Guthrie, L., & Wilks, Y. (2006). A closer look at skip-gram modelling. In Proceedings of the 5th international conference on language resources and evaluation (LREC-2006) (pp. 1–4).Google Scholar
  32. He, X., Kan, M.Y., Xie, P., & Chen, X. (2014). Comment-based multi-view clustering of Web 2.0 items. In Proceedings of the 23rd international conference on World Wide Web (pp. 771–782): ACM.Google Scholar
  33. Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2(1), 193–218.CrossRefzbMATHGoogle Scholar
  34. Hughes, A.J., Daniel, S.E., Kilford, L., & Lees, A.J. (1992). Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. Journal of Neurology Neurosurgery & Psychiatry, 55(3), 181–184.CrossRefGoogle Scholar
  35. Imhoff, M., Bauer, M., Gather, U., & Löhlein, D. (1998). Time series analysis in intensive care medicine. Tech. rep. SFB 475: Komplexitätsreduktion in Multivariaten Datenstrukturen, Universität Dortmund.Google Scholar
  36. Kaufman, L., & Rousseeuw, P. (1987). Clustering by means of medoids. North-Holland.Google Scholar
  37. Kaufman, L., & Rousseeuw, P.J. (1990). Finding groups in data. an introduction to cluster analysis. Wiley Series in Probability and Mathematical Statistics Applied Probability and Statistics.Google Scholar
  38. Kumar, A., & III, H.D. (2011). A co-training approach for multi-view spectral clustering. In Proceedings of the 28th international conference on machine learning, ICML (pp. 393–400).Google Scholar
  39. Lewis, S., Foltynie, T., Blackwell, A., Robbins, T., Owen, A., & Barker, R. (2005). Heterogeneity of Parkinson’s disease in the early clinical stages using a data driven approach. Journal of Neurology, Neurosurgery & Psychiatry, 76(3), 343–348.CrossRefGoogle Scholar
  40. Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R.P., Tang, J., & Liu, H. (2016). Feature selection: a data perspective. arXiv:160107996.
  41. Lin, J., Keogh, E., Wei, L., & Lonardi, S. (2007). Experiencing SAX: a novel symbolic representation of time series. Data Mining and Knowledge Discovery, 15(2), 107–144.MathSciNetCrossRefGoogle Scholar
  42. Liu, Y., Li, Z., Xiong, H., Gao, X., & Wu, J. (2010). Understanding of internal clustering validation measures. In Proceedings of IEEE 10th international conference on data mining (ICDM) (pp. 911–916).Google Scholar
  43. Liu, Y., Li, W., Tan, C., Liu, X., Wang, X., Gui, Y., Qin, L., Deng, F., Hu, C., & Chen, L. (2014). Meta-analysis comparing deep brain stimulation of the globus pallidus and subthalamic nucleus to treat advanced Parkinson disease: a review. Journal of Neurosurgery, 121(3), 709–718.CrossRefGoogle Scholar
  44. Ma, L.Y., Chan, P., Gu, Z.Q., Li, F.F., & Feng, T. (2015). Heterogeneity among patients with Parkinson’s disease: cluster analysis and genetic association. Journal of the Neurological Sciences, 351(1), 41–45.CrossRefGoogle Scholar
  45. Marek, K., Jennings, D., Lasch, S., Siderowf, A., Tanner, C., Simuni, T., Coffey, C., Kieburtz, K., Flagg, E., Chowdhury, S., & et al. (2011). The Parkinson’s Progression Markers Initiative (PPMI). Progress in Neurobiology, 95(4), 629–635.CrossRefGoogle Scholar
  46. Michalski, R.S. (1983). A theory and methodology of inductive learning. Artificial Intelligence, 20(2), 111–161.MathSciNetCrossRefGoogle Scholar
  47. Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv:
  48. Minarro-Giménez, J.A., Marín-alonso, O., & Samwald, M. (2013). Exploring the application of deep learning techniques on medical text corpora. Studies in Health Technology and Informatics, 205, 584–588.Google Scholar
  49. Murugesan, S., Bouchard, K., Chang, E., Dougherty, M., Hamann, B., & Weber, G.H. (2017). Multi-scale visual analysis of time-varying electrocorticography data via clustering of brain regions. BMC Bioinformatics, 18(6), 236.CrossRefGoogle Scholar
  50. National Collaborating Centre for Chronic Conditions. (2006). Parkinson’s disease: national clinical guideline for diagnosis and management in primary and secondary care. London: Royal College of Physicians.Google Scholar
  51. Patel, S., Lorincz, K., Hughes, R., Huggins, N., Growdon, J., Standaert, D., Akay, M., Dy, J., Welsh, M., & Bonato, P. (2009). Monitoring motor fluctuations in patients with Parkinson’s disease using wearable sensors. IEEE Transactions on Information Technology in Biomedicine, 13(6), 864–873.CrossRefGoogle Scholar
  52. PD_manager: m-Health platform for Parkinson’s disease management. (2015). EU Framework Programme for Research and Innovation Horizon 2020, Grant number 643706, 2015–2017.
  53. Ramani, R.G., & Sivagami, G. (2011). Parkinson disease classification using data mining algorithms. International Journal of Computer Applications, 32(9), 17–22.Google Scholar
  54. Reijnders, J., Ehrt, U., Lousberg, R., Aarsland, D., & Leentjens, A. (2009). The association between motor subtypes and psychopathology in Parkinson’s disease. Parkinsonism & Related Disorders, 15(5), 379–382.CrossRefGoogle Scholar
  55. Riviere, C.N., Reich, S.G., & Thakor, N.V. (1997). Adaptive Fourier modeling for quantification of tremor. Journal of Neuroscience Methods, 74(1), 77–87.CrossRefGoogle Scholar
  56. Rousseeuw, P.J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65.CrossRefzbMATHGoogle Scholar
  57. Samà, A., Pérez-López, C., Rodríguez-martín, D., Moreno-aróstegui, J.M., Rovira, J., Ahlrichs, C., Castro, R., Graċa, R., Guimarães, V., & et al. (2015). A double closed loop to enhance the quality of life of Parkinson’s disease patients: REMPARK system. Innovation in Medicine and Healthcare, 2014(207), 115.Google Scholar
  58. Schieb, L.J., Mobley, L.R., George, M., & Casper, M. (2013). Tracking stroke hospitalization clusters over time and associations with county-level socioeconomic and healthcare characteristics. Stroke, 44(1), 146–152.CrossRefGoogle Scholar
  59. SENSE-PARK. (2016). Project’s website:, accessed: 2016/07/01.
  60. Stecher, J., Janssen, F., & Fürnkranz, J. (2014). Separating rule refinement and rule selection heuristics in inductive rule learning. In Proceedings of machine learning and knowledge discovery in databases - European conference, ECML PKDD 2014 (pp. 114–129).Google Scholar
  61. Szymański, A., Kubis, A., & Przybyszewski, A.W. (2015). Data mining and neural network simulations can help to improve deep brain stimulation effects in Parkinson’s disease. Computer Science, 16(2), 199.CrossRefGoogle Scholar
  62. Timmer, J., Gantert, C., Deuschl, G., & Honerkamp, J. (1993). Characteristics of hand tremor time series. Biological Cybernetics, 70(1), 75–80.CrossRefzbMATHGoogle Scholar
  63. Tzallas, A.T., Tsipouras, M.G., Rigas, G., Tsalikakis, D.G., Karvounis, E.C., Chondrogiorgi, M., Psomadellis, F., Cancela, J., Pastorino, M., Waldmeyer, M.T.A., & et al. (2014). PERFORM: a system for monitoring, assessment and management of patients with Parkinson’s disease. Sensors, 14(11), 21,329– 21,357.CrossRefGoogle Scholar
  64. Tzortzis, G., & Likas, A. (2009). Convex mixture models for multi-view clustering. In Proceedings of the 19th international conference artificial neural networks - ICANN (Vol. 2009, pp. 205–214).Google Scholar
  65. Valmarska, A., Robnik-Šikonja, M., & Lavrač, N. (2015). Inverted heuristics in subgroup discovery. In Proceedings of the 18th international multiconference information society.Google Scholar
  66. Valmarska, A., Miljkovic, D., Lavrač, N., & Robnik-Šikonja, M. (2016). Towards multi-view approach to Parkinson’s disease quality of life data analysis. In Proceedings of the 5th international workshop on new frontiers in mining complex patterns at ECML-PKDD2016.Google Scholar
  67. Valmarska, A., Lavrač, N., Fürnkranz, J., & Robnik-Šikonja, M. (2017). Refinement and selection heuristics in subgroup discovery and classification rule learning. Expert Systems with Applications, 81, 147–162.CrossRefGoogle Scholar
  68. Visser, M., Marinus, J., Stiggelbout, A.M., & Van Hilten, J.J. (2004). Assessment of autonomic dysfunction in Parkinson’s disease: the SCOPA-AUT. Movement Disorders, 19(11), 1306–1312.CrossRefGoogle Scholar
  69. Washburn, R.A., Smith, K.W., Jette, A.M., & Janney, C.A. (1993). The physical activity scale for the elderly (PASE): development and evaluation. Journal of Clinical Epidemiology, 46(2), 153–162.CrossRefGoogle Scholar
  70. Xu, C., Tao, D., & Xu, C. (2013). A survey on multi-view learning. Neural Computing and Applications, 23(7–8), 2031–2038.Google Scholar
  71. Zhao, J., Papapetrou, P., Asker, L., & Boström, H. (2017). Learning from heterogeneous temporal data in electronic health records. Journal of Biomedical Informatics, 65, 105–119.CrossRefGoogle Scholar
  72. Zhao, Z., & Liu, H. (2007). Spectral feature selection for supervised and unsupervised learning. In Proceedings of the 24th international conference on machine learning (pp. 1151–1157). ACM.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Anita Valmarska
    • 1
    • 2
    Email author
  • Dragana Miljkovic
    • 1
  • Nada Lavrač
    • 1
    • 2
    • 3
  • Marko Robnik-Šikonja
    • 4
  1. 1.Jožef Stefan InstituteLjubljanaSlovenia
  2. 2.Jožef Stefan International Postgraduate SchoolLjubljanaSlovenia
  3. 3.University of Nova GoricaNova GoricaSlovenia
  4. 4.Faculty of Computer and Information ScienceUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations