Journal of Intelligent Information Systems

, Volume 47, Issue 3, pp 345–374 | Cite as

A 1NF temporal relational model and algebra coping with valid-time temporal indeterminacy



In the real world, many phenomena are time related and in the last three decades the database community has devoted much work in dealing with “time of facts” in databases. While many approaches incorporating time in the relational model have been already devised, most of them assume that the exact time of facts is known. However, this assumption does not hold in many practical domains, in which temporal indeterminacy of facts occurs. The treatment of valid-time indeterminacy requires in-depth extensions to the current relational approaches. In this paper, we propose a theoretically grounded approach to cope with this issue, overcoming the limitations of related approaches in the literature. In particular, we present a 1NF temporal relational model and propose a new temporal relational algebra to query it. We also formally study the properties of the new data model and algebra, thus granting that our approach is interoperable with pre-existent temporal and non-temporal relational approaches, and is implementable on top of them. Finally, we consider computational complexity, showing that only a limited overhead is added when moving from determinate to indeterminate time.


Relational databases Temporal data Temporal indeterminacy 



The authors are very much indebted to R.T. Snodgrass for many enlightening suggestions and invaluable support he gave us in the preliminary stages of this work.

The work described in this paper was partially supported by Compagnia di San Paolo in the Ginseng project.


  1. Allen, J.F. (1991). Time and time again: the many ways to represent time. International Journal of Intelligent Systems, 6(4), 341–355.CrossRefGoogle Scholar
  2. Anselma, L., Bottrighi, A., Montani, S., & Terenziani, P. (2013a). Extending BCDM to cope with proposals and evaluations of updates. IEEE Transactions on Knowledge and Data Engineering, 25(3), 556–570. doi: 10.1109/TKDE.2011.170.CrossRefGoogle Scholar
  3. Anselma, L., Stantic, B., Terenziani, P., & Sattar, A. (2013b). Querying now-relative data. Journal of Intelligent Information System, 41(2), 285–311. doi: 10.1007/s10844-013-0245-8.CrossRefGoogle Scholar
  4. Anselma, L., Terenziani, P., & Snodgrass, R.T. (2013c). Valid-time indeterminacy in temporal relational databases: Semantics and representations. IEEE Transactions on Knowledge and Data Engineering, 25(12), 2880–2894. doi: 10.1109/TKDE.2012.199.CrossRefGoogle Scholar
  5. Brusoni, V., Console, L., Terenziani, P., & Pernici, B. (1999). Qualitative and quantitative temporal constraints and relational databases: Theory, architecture, and applications. IEEE Transactions on Knowledge and Data Engineering, 11(6), 948–968.CrossRefGoogle Scholar
  6. Chomicki J, & Toman D (2009). Temporal relational calculus. In L. Liu, & M.T. Özsu (Eds.), Encyclopedia of database systems. doi: 10.1007/978-0-387-39940-9_1531 (pp. 3015–3016). US: Springer.
  7. Codd, E.F. (1971). Further normalization of the data base relational model. San Jose: IBM Research Report.Google Scholar
  8. Codd, E.F. (1972). Relational completeness of data base sublanguages. In R. Rustin (Ed.), Database systems: 65-98. San Jose: Prentice Hall and IBM Research Report RJ987.Google Scholar
  9. Combi, C., Cucchi, G., & Pinciroli, F. (1997). Applying object-oriented technologies in modeling and querying temporally oriented clinical databases dealing with temporal granularity and indeterminacy. IEEE Transactions on Information Technology in Biomedicine, 1(2), 100–127.CrossRefGoogle Scholar
  10. Das, A.K., & Musen, M.A. (1994). A temporal query system for protocol-directed decision support. Methods of Information in Medicine, 33(4), 358–370. PMID:7799812.Google Scholar
  11. Dekhtyar, A., Ross, R.B., & Subrahmanian, V.S. (2001). Probabilistic temporal databases, i: algebra. ACM Transactions on Database Systems, 26(1), 41–95.CrossRefMATHGoogle Scholar
  12. Dunn, J., Davey, S., Descour, A., & Snodgrass, R.T. (2002). Sequenced subset operators: Definition and implementation. In R. Agrawal, & K.R. Dittrich (Eds.), ICDE (pp. 81–92): IEEE Computer Society.Google Scholar
  13. Dutta S (1989). Generalized events in temporal databases. In Proceedings Fifth International Conference on Data Engineering, 1989. doi: 10.1109/ICDE.1989.47207 (pp. 118–125).
  14. Dyreson, C.E. (2009). Temporal indeterminacy. In L. Liu, & M.T. Özsu (Eds.), Encyclopedia of database systems (pp. 2973–2976). US: Springer.Google Scholar
  15. Dyreson, C.E., & Snodgrass, R.T. (1998). Supporting valid-time indeterminacy. ACM Transactions on Database Systems, 23(1), 1–57.CrossRefGoogle Scholar
  16. Emerson, E.A. (1990). Temporal and modal logic. In J. van Leeuwen (Ed.), Handbook of theoretical computer science, volume B: Formal models and sematics (B) (pp. 995–1072): The MIT Press.Google Scholar
  17. Gadia, S.K., Nair, S.S., & Poon, Y.C. (1992). Incomplete information in relational temporal databases. In L.Y. Yuan (Ed.), VLDB (pp. 395–406): Morgan Kaufmann.Google Scholar
  18. Jensen, C., & Snodgrass, R. (2008). Temporal Database Entries for the Springer Encyclopedia of Database Systems, TimeCenter Technical Report, Timecenter.Google Scholar
  19. Jensen, C.S., & Snodgrass, R.T. (1996). Semantics of time-varying information. Information Systems, 21(4), 311–352.CrossRefGoogle Scholar
  20. Jensen, C.S., & Snodgrass, R.T. (1999). Temporal data management. IEEE Transactions on Knowledge and Data Engineering, 11(1), 36–44.CrossRefGoogle Scholar
  21. McKenzie, L.E., & Snodgrass, R.T. (1991). Evaluation of relational algebras incorporating the time dimension in databases. ACM Computing Surveys, 23(4), 501–543.CrossRefGoogle Scholar
  22. Özsoyoglu, G., & Snodgrass, R.T. (1995). Temporal and real-time databases: A survey. IEEE Transactions on Knowledge and Data Engineering, 7(4), 513–532.CrossRefGoogle Scholar
  23. Snodgrass, RT. (1982). Monitoring distributed systems: A relational approach, PhD thesis, Computer Science Department. Pittsburgh: Carnegie Mellon University.Google Scholar
  24. R.T. Snodgrass (Ed.) (1995). The TSQL2 Temporal Query Language: Kluwer.Google Scholar
  25. Snodgrass, R.T. (1999). Developing time-oriented database applications in SQL: Morgan Kaufmann.Google Scholar
  26. Stantic, B., Terenziani, P., Governatori, G., Bottrighi, A., & Sattar, A. (2012). An implicit approach to deal with periodically repeated medical data. Artificial Intelligence in Medicine, 55(3), 149–162.CrossRefGoogle Scholar
  27. A.U. Tansel, J. Clifford, S.K. Gadia, S. Jajodia, A. Segev, & R.T. Snodgrass (Eds.) (1993). Temporal Databases: Theory, Design, and Implementation: Benjamin/Cummings.Google Scholar
  28. Terenziani, P. (2003). Symbolic user-defined periodicity in temporal relational databases. IEEE Transactions on Knowledge and Data Engineering, 15(2), 489–509. doi: 10.1109/TKDE.2003.1185847.CrossRefGoogle Scholar
  29. Terenziani, P. (2012). Temporal aggregation on user-defined granularities. Journal of Intelligent Information System, 38(3), 785–813. doi: 10.1007/s10844-011-0179-y.CrossRefGoogle Scholar
  30. Terenziani, P. (2013). Coping with events in temporal relational databases. IEEE Transactions on Knowledge and Data Engineering, 25(5), 1181–1185. doi: 10.1109/TKDE.2011.265.CrossRefGoogle Scholar
  31. Terenziani, P., & Snodgrass, R. (2004). Reconciling point-based and interval-based semantics in temporal relational databases: a treatment of the telic/atelic distinction. IEEE Transactions on Knowledge and Data Engineering, 16(5), 540–551. doi: 10.1109/TKDE.2004.1277816.CrossRefGoogle Scholar
  32. Terenziani, P., Snodgrass, R.T., Bottrighi, A., Torchio, M., & Molino, G. (2007). Extending temporal databases to deal with telic/atelic medical data. Artificial Intelligence in Medicine, 39(2), 113–126.CrossRefGoogle Scholar
  33. Vila, L. (1994). A survey on temporal reasoning in artificial intelligence. AI Communications, 7(1), 4–28.Google Scholar
  34. Wu, Y., Jajodia, S., & Wang, X.S. (1997). Temporal database bibliography update. In Temporal Databases, Dagstuhl (pp. 338–366).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Dipartimento di InformaticaUniversità degli Studi di TorinoTorinoItaly
  2. 2.DISITUniversità del Piemonte Orientale “Amedeo Avogadro”AlessandriaItaly

Personalised recommendations