Journal of Intelligent Information Systems

, Volume 40, Issue 3, pp 375–403 | Cite as

An argumentation framework for description logic ontology reasoning and management



This paper presents an argumentation framework for reasoning and management in (inconsistent or incoherent) description logic ontologies which contain conflicts. First, a new argumentation framework obtained by combining Besnard and Hunter’s framework with binary argumentation is introduced to frame the inner relation over axioms in an ontology. A dialogue mechanism, based on this framework, is then presented to derive meaningful consequences from inconsistent ontologies. Three novel operators are developed to repair those axioms or assertions which cause inconsistency or incoherency of ontologies by using this framework. Within this framework, an inconsistency is neither directly assigned a contradictory value nor roughly removed but further analyzed and evaluated. Because of this, reasoning within it satisfies some important logical properties such as consistency-preserving and justifiability. Moreover, it provides an alternative scenario for maintaining consistency and coherency of ontologies with giving consideration to both semantics and syntax. Thus the repaired results by using the proposed framework not only keep the closer semantics but also preserve the syntactic structure of original ontologies.


Ontology Description logic Handling inconsistency Argumentation Ontology management Paraconsistent reasoning 



We would like to thank the anonymous referees for their critical comments which helped us to improve the paper. We thank Kedian Mu, Yue Ma, Zhihu Zhang and Dai Xu etc for helpful comments and discussions. Xiaowang Zhang is funded by the project of Research Foundation Flanders under grant G.0489.10N and Zuoquan Lin is funded by the Ph.D. Programs Foundation of Ministry of Education of China.


  1. Arieli, O., Avron, A., Zamansky, A. (2011). What is an ideal logic for reasoning with inconsistency? In Proc. of IJCAI’11, USA (pp. 706–711). Menlo Park: AAAI Press.Google Scholar
  2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (Eds.) (2003). The description logic handbook: theory, implementation, and applications. Cambridge: Cambridge University Press.MATHGoogle Scholar
  3. Berners-Lee, T., Hendler, J., Lassila, O. (2001). The semantic web. New York: Scientific American Magazine.Google Scholar
  4. Bertossi, L.E. , Hunter, A., Schaub, T. (Eds.) (2005). Inconsistency tolerance. LNCS 3300. New York: Springer.Google Scholar
  5. Besnard, P., & Hunter, A. (2001). A logic-based theory of deductive arguments. Artificial Intelligence, 128(1–2), 203–235.MathSciNetMATHCrossRefGoogle Scholar
  6. Bienvenu, M. (2008). Prime implicate normal form for ALC concepts. In Proc. of AAAI’08, USA (pp. 412–417). Menlo Park: AAAI Press.Google Scholar
  7. Black, E., Hunter, A., Pan, J.Z. (2009). An argument-based approach to using multiple ontologies. In Proc. of SUM’09, USA, LNAI 5785 (pp. 68–79). New York: Springer.Google Scholar
  8. Calvanese, D. (1996). Finite model reasoning in description logics. In Proc. of KR’96, USA (pp. 292–303). San Mateo: Morgan Kaufmann.Google Scholar
  9. Davies, J., Grobelnik, M., Mladenic, D. (Eds.) (2009). Semantic knowledge management. Integrating ontology management, knowledge discovery, and human language technologies. New York: Springer.MATHGoogle Scholar
  10. Du, J., & Shen, Y. (2008). Computing minimum cost diagnoses to repair populated DL-based ontologies. In Proc. of WWW’08, China (pp. 565–574). New York: ACM.Google Scholar
  11. Dung, P.M. (1995a). An argumentation-theoretic foundations for logic programming. Journal of Logic Programming, 22(2), 151–171.MathSciNetMATHCrossRefGoogle Scholar
  12. Dung, P.M. (1995b). On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence, 77(2), 321–358.MathSciNetMATHCrossRefGoogle Scholar
  13. Flouris, G., Huang, Z., Pan, J.Z., Plexousakis, D., Wache, H. (2006). Inconsistencies, negations and changes in ontologies. In Proc. of AAAI’06, USA. Menlo Park: AAAI Press.Google Scholar
  14. Gómez, S.A. , Chesñevar, C.I. , Simari, G.R. (2008). An argumentative approach to reasoning with inconsistent ontologies. In Proc. of KROW’08, Australia, CRPIT 90 (pp. 11–20). Nottingham: ACS.Google Scholar
  15. Gómez, S.A., Chesñevar, C.I., Simari, G.R. (2010). Reasoning with inconsistent ontologies through argumentation. Applications of Artificial Intelligence, 24(1–2), 102–148.CrossRefGoogle Scholar
  16. Grosof, B.N., Horrocks, I., Volz, R., Decker, S. (2003). Description logic programs: combining logic programs with description logic. In Proc. of WWW’03, Hungary (pp. 48–57). New York: ACM.Google Scholar
  17. Horrocks, I. (2008). Ontologies and the semantic web. Communications of the ACM, 51(12), 58–67.CrossRefGoogle Scholar
  18. Horrocks, I., & Patel-Schneider, P.F. (2003). Reducing OWL entailment to description logic satisfiability. In Proc. of ISWC’03, USA, LNCS 2870 (pp. 17–29). New York: Springer.Google Scholar
  19. Huang, Z., van Harmelen, F., ten Teije, A. (2005). Reasoning with inconsistent ontologies. In Proc. of IJCAI’05, UK (pp. 454–459). Professional Book Center.Google Scholar
  20. Ji, Q., Haase, P., Qi, G., Hitzler, P., Stadtmüller, S. (2009). RaDON—repair and diagnosis in ontology networks. In Proc. of ESWC’09, Greece, LNCS 5554 (pp. 863–867). New York: Springer.Google Scholar
  21. Kalyanpur, A., Parsia, B., Sirin, E., Grau, C.B. (2006). Debugging unsatisfiable classes in OWL ontologies. Journal of Web Semantics, 3(4), 268–293.CrossRefGoogle Scholar
  22. Kalyanpur, A., Parsia, B., Sirin, E., Grau, C.B. (2006). Repairing unsatisfiable concepts in OWL ontologies. In Proc. of ESWC’06, Montenegro, LNCS 4011 (pp. 170–184). New York: Springer.Google Scholar
  23. Konev, B., Walther, D., Wolter, F. (2009). Forgetting and uniform interpolation in large-scale description logic terminologies. In Proc. of IJCAI’09, USA (pp. 830–835).Google Scholar
  24. Ma, Y., Hitzler, P., Lin, Z. (2007). Algorithms for paraconsistent reasoning with OWL. In Proc. of ESWC’07, Austria, LNCS 4519 (pp. 399–413). New York: Springer.Google Scholar
  25. Meyer, T., Lee, K., Booth, R. (2005). Knowledge integration for description logics. In Proc.of AAAI’05, USA (pp. 645–650). Cambridge: AAAI Press/The MIT Press.Google Scholar
  26. Meyer, T., Lee, K., Booth, R., Pan, J. (2006). Finding maximally satisfiable terminologies for the description logic ALC. In Proc. of AAAI’06, USA. Menlo Park: AAAI Press.Google Scholar
  27. Odintsov, S.P., & Wansing, H. (2008). Inconsistency-tolerant description logic. part II: a tableau algorithm for CACL\(^{\text{c}}\). Journal of Applied Logic, 6(3), 343–360.MathSciNetMATHCrossRefGoogle Scholar
  28. Patel-Schneider, P.F. (1989). A four-valued semantics for terminological logics. Artificial Intelligence, 38(3), 319–351.MathSciNetMATHCrossRefGoogle Scholar
  29. Qi, G., & Du, J. (2009). Model-based revision operators for terminologies in description logics. In Proc. of IJCAI’09, USA (pp. 891–897). Professional Book Center.Google Scholar
  30. Schlobach, S. (2005). Diagnosing terminologies. In Proc. of AAAI’05, USA. Cambridge: AAAI Press/The MIT Press.Google Scholar
  31. Schlobach, S., & Cornet, R. (2003). Non-standard reasoning services for the debugging of description logic terminologies. In Proc. of IJCAI’03, Mexico (pp. 355–362). San Mateo: Morgan Kaufmann.Google Scholar
  32. Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y. (2007). Pellet: A practical OWL-DL reasoner. Journal of Web Semantics, 5(2), 51–53.CrossRefGoogle Scholar
  33. Wang, Z., Wang, K., Topor, R.W. (2010). A new approach to knowledge base revision in DL-Lite. In Proc. of AAAI’10, USA. Menlo Park: AAAI Press.Google Scholar
  34. Zhang, X., & Lin, Z. (2012). Quasi-classical description logic. Journal of Multiple-Valued Logic and Soft Computing, 18(3–4), 291–327.MathSciNetMATHGoogle Scholar
  35. Zhang, X., Lin, Z., Wang, K. (2010). Towards a paradoxical description logic for the Semantic Web. In Proc. of FoIKS’10, Bulgaria, LNCS 5956 (pp. 306–325). New York: Springer.Google Scholar
  36. Zhang, X., Xiao, G., Lin, Z. (2009). A tableau algorithm for handling inconsistency in OWL. In Proc. of ESWC’09, Greece, LNCS 5554 (pp. 399–413). New York: Springer.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Hasselt University and Transnational University of LimburgDiepenbeekBelgium
  2. 2.School of Mathematical SciencesPeking UniversityBeijingP. R. China

Personalised recommendations