Advertisement

Journal of Intelligent Information Systems

, Volume 38, Issue 3, pp 601–644 | Cite as

Modeling temporal dimensions of semistructured data

  • Carlo Combi
  • Barbara Oliboni
  • Elisa Quintarelli
Article

Abstract

In this paper we propose a graph-based generic model able to uniformly represent semistructured data and their temporal aspects. In particular, we start from a generic and expressive model proposed in the database literature and consider in a formal and systematic way both valid time and transaction time, together with the set of temporal constraints needed to correctly manage the semantics of the represented time dimension. We then propose operations, which allow the incremental management of the proposed model satisfying the introduced temporal constraints. Moreover, we also deal with the possibility of managing together the two classical time dimensions of valid and transaction times, and formalize the set of constraints needed to correctly handle these temporal aspects together. Some examples taken from a medical scenario will be used to describe the introduced concepts.

Keywords

Temporal databases Semistructured data Valid time Transaction time Data modeling Temporal constraints Clinical databases 

References

  1. Abiteboul, S. (1997). Querying semi-structured data. In Proceedings of the international conference on database theory. Lecture notes in computer science (Vol. 1186, pp. 262–275).Google Scholar
  2. Ali, K. A., & Pokorný, J. (2006). A comparison of XML-based temporal models. In E. Damiani, K. Yétongnon, R. Chbeir, & A. Dipanda (Eds.), SITIS. Lecture notes in computer science (Vol. 4879, pp. 339–350). Springer.Google Scholar
  3. Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Communications of the ACM, 26, 832–843.CrossRefGoogle Scholar
  4. Amagasa, T., Yoshikawa, M., & Uemura, S. (2000). A data model for temporal XML documents. In Database and expert systems applications, 11th international conference, DEXA 2000. Lecture notes in computer science (Vol. 1873, pp. 334–344). Berlin: Springer.Google Scholar
  5. Amagasa, T., Yoshikawa, M., & Uemura, S. (2001). A bitemporal XML data model. In IPSJ SIGNotes dataBase systems (Vol. 125).Google Scholar
  6. Amagasa, T., Yoshikawa, M., & Uemura, S. (2001). Realizing temporal XML repositories using temporal relational databases. In Proceedings of the third international symposium on cooperative database systems and applications (pp. 63–68). IEEE Computer Society.Google Scholar
  7. Atzeni, P. (2002). Time: A coordinate for web site modelling. In Advances in databases and information systems, 6th east European conference, ADBIS 2002. Lecture notes in computer science (Vol. 2435, pp. 1–7). Berlin: Springer.Google Scholar
  8. Böhlen, M. H., Snodgrass, R. T., & Soo, M. D. (1996). Coalescing in temporal databases. In VLDB’96, proceedings of 22th international conference on very large data bases (pp. 180–191), 3–6 September 1996, Mumbai (Bombay), India. Morgan Kaufmann.Google Scholar
  9. Buneman, P., Davidson, S. B., Hillebrand, G. G., & Suciu, D. (1996). A query language and optimization techniques for unstructured data. In Proceedings of the 1996 ACM SIGMOD international conference on management of data (pp. 505–516). ACM Press.Google Scholar
  10. Buneman, P., Khanna, S., Tajima, K., & Tan, W. C. (2002). Archiving scientific data. In SIGMOD conference. Google Scholar
  11. Campo, M., & Vaisman, A. A. (2006). Consistency of temporal XML documents. In S. Amer-Yahia, Z. Bellahsene, E. Hunt, R. Unland, & J. X. Yu (Eds.), XSym. Lecture notes in computer science (Vol. 4156, pp. 31–45). Springer.Google Scholar
  12. Ceri, S., Comai, S., Damiani, E., Fraternali, P., Paraboschi, S., & Tanca, L. (1999). XML-GL: A graphical language for querying and restructuring XML documents. Computer Network, 31 (11–16), 1171–1187.CrossRefGoogle Scholar
  13. Chawathe, S. S., Abiteboul, S., & Widom, J. (1998). Representing and querying changes in semistructured data. In Proceedings of the fourteenth international conference on data engineering (pp. 4–13). IEEE Computer Society.Google Scholar
  14. Chawathe, S. S., Abiteboul, S., & Widom, J. (1999). Managing historical semistructured data. Theory and Practice of Object Systems, 5(3), 143–162.CrossRefGoogle Scholar
  15. Combi, C. (2000). Modeling temporal aspects of visual and textual objects in multimedia databases. In Proceedings of the seventh international symposium on temporal representation and reasoning (TIME-00) (pp. 59–68).Google Scholar
  16. Combi, C., Degani, S., & Jensen, C. S. (2008). Capturing temporal constraints in temporal ER models. In Q. Li, S. Spaccapietra, E. S. K. Yu, & A. Olivé (Eds.), ER. Lecture notes in computer science (Vol. 5231, pp. 397–411). Springer.Google Scholar
  17. Combi, C., Keravnou-Papailiou, E., & Shahar, Y. (2010). Temporal information systems in medicine (1st ed.). Springer.Google Scholar
  18. Combi, C., Oliboni, B., & Quintarelli, E. (2004). A graph-based data model to represent transaction time in semistructured data. In Database and expert systems applications. Lecture notes in computer science (Vol. 3180, pp. 559–568). Berlin: Springer.CrossRefGoogle Scholar
  19. Combi, C., & Pozzi, G. (2006). Temporal representation and reasoning in medicine. Artificial Intelligence in Medicine, 38(2), 97–100.CrossRefGoogle Scholar
  20. Consens, M. P., & Mendelzon, A. O. (1990). Graphlog: A visual formalism for real life recursion. In Proceedings of the ninth ACM SIGACT-SIGMOD-SIGART symposium on principles of database systems (pp. 404–416). ACM Press.Google Scholar
  21. Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to algorithms (2nd ed.). MIT press.Google Scholar
  22. Damiani, E., Oliboni, B., Quintarelli, E., & Tanca, L. (2003). Modeling semistructured data by using graph-based constraints. In OTM workshops proceedings. Lecture notes in computer science (pp. 20–21). Berlin: Springer.Google Scholar
  23. Dyreson, C. (2001). Towards a temporal world-wide web: A transaction-time web server. In Proceedings of the Australian Database Conference (ADC ’01) (pp. 169–175).Google Scholar
  24. Dyreson, C. E. (2001). Observing transaction-time semantics with TTXPath. In Proceedings of the 2nd international conference on Web Information Systems Engineering (WISE’01) (pp. 193–202).Google Scholar
  25. Dyreson, C. E., Böhlen, M. H., & Jensen, C. S. (1999). Capturing and querying multiple aspects of semistructured data. In VLDB’99, proceedings of 25th international conference on very large data bases (pp. 290–301). Morgan Kaufmann.Google Scholar
  26. Dyreson, C. E., & Grandi, F. (2009). Temporal XML. In L. Liu & M. T. Özsu (Eds.), Encyclopedia of database systems (pp. 3032–3035). Springer US.Google Scholar
  27. Dyreson, C. E., Snodgrass, R. T., Currim, F., & Currim, S. (2006). Schema-mediated exchange of temporal XML data. In: D. W. Embley, A. Olivé, & S. Ram (Eds.), ER. Lecture notes in computer science (Vol. 4215, pp. 212–227). Springer.Google Scholar
  28. Fernandez, M., Florescu, D., Kang, J., Levy, A., & Suciu, D. (1997). STRUDEL: A web site management system. In Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD Record (Vol. 26,2, pp. 549–552). ACM Press.Google Scholar
  29. Garani, G. (2006). A generalised temporal algebra. Data and Knowledge Engineering, 57(3), 283–310.CrossRefGoogle Scholar
  30. Gibbons, R., et al. (1999). ACC/AHA/ACP-ASIM guidelines for the management of patients with chronic stable angina. Journal of American College of Cardiology, 33, 2092–2197.CrossRefGoogle Scholar
  31. Grandi, F., & Mandreoli, F. (2000). The Valid Web: An XML/XSL infrastructure for temporal management of web documents. In Advances in information systems, first international conference, ADVIS 2000. Lecture notes in computer science (Vol. 1909, pp. 294–303). Berlin: Springer.Google Scholar
  32. Grandi, F., Mandreoli, F., & Tiberio, P. (2005). Temporal modelling and management of normative documents in XML format. Data & Knowledge Engineering, 54(3), 327–354.CrossRefGoogle Scholar
  33. Gregersen, H., & Jensen, C. S. (1999). Temporal entity-relationship models—a survey. IEEE Transactions on Knowledge and Data Engineering, 11(3), 464–497.CrossRefGoogle Scholar
  34. Hunter, A. (2002). Merging structured text using temporal knowledge. Knowledge and Data Engineering, 41(1), 29–66.CrossRefGoogle Scholar
  35. Jensen, C. S., Dyreson, C. E., et al. (1998). M. H. B.: The consensus glossary of temporal database concepts—february 1998 version. In Temporal databases: Research and practice. The book grow out of a Dagstuhl seminar, 23–27 June 1997. Lecture notes in computer science (Vol. 1399, pp. 367–405) Springer.Google Scholar
  36. Jensen, C. S., & Snodgrass, R. (1999). Temporal data management. IEEE Transactions on Knowledge and Data Engineering, 11(1), 36–44.CrossRefGoogle Scholar
  37. Li, X., Liu, M., Ghafoor, A., & Sheu, P. C. Y. (2010). A pattern-based temporal XML query language. In L. Chen, P. Triantafillou, & T. Suel (Eds.), WISE. Lecture notes in computer science (Vol. 6488, pp. 428–441). Springer.Google Scholar
  38. Mandreoli, F., Martoglia, R., & Ronchetti, E. (2006). Supporting temporal slicing in XML databases. In Y.E. Ioannidis, M. H. Scholl, J. W. Schmidt, F. Matthes, M. Hatzopoulos, K. Böhm, et al. (Eds.), EDBT. Lecture notes in computer science (Vol. 3896, pp. 295–312). Springer.Google Scholar
  39. Manica, E., Dorneles, C. F., & de Matos Galante, R. (2010). Supporting temporal queries on XML Keyword Search Engines. JIDM, 1(3), 471–486.Google Scholar
  40. Mendelzon, A., & Rizzolo, F. (2004). A.V.: Indexing temporal XML documents. In VLDB’04, proceedings of 30th international conference on very large data bases (pp. 216–227). Morgan Kaufmann.Google Scholar
  41. Noh, S. Y., & Gadia, S. K. (2006). A comparison of two approaches to utilizing XML in parametric databases for temporal data. Information & Software Technology, 48(9), 807–819.CrossRefGoogle Scholar
  42. Noh, S. Y., Gadia, S. K., & Ma, S. (2008). An XML-based methodology for parametric temporal database model implementation. Journal of Systems and Software, 81(6), 929–948.CrossRefGoogle Scholar
  43. Oliboni, B., Quintarelli, E., & Tanca, L. (2001). Temporal aspects of semistructured data. In Proceedings of the eighth international symposium on temporal representation and reasoning (TIME-01) (pp. 119–127). IEEE Computer Society.Google Scholar
  44. Papakonstantinou, Y., Garcia-Molina, H., & Widom, J. (1995). Object exchange across heterogeneous information sources. In Proceedings of the eleventh international conference on data engineering (pp. 251–260). IEEE Computer Society.Google Scholar
  45. Paredaens, J., Peelman, P., & Tanca, L. (1995). G–Log: A declarative graphical query language. IEEE Transactions on Knowledge and Data Engineering, 7(3), 436–453.CrossRefGoogle Scholar
  46. Rizzolo, F., & Vaisman, A. A. (2008). Temporal XML: Modeling, indexing, and query processing. VLDB Journal, 17(5), 1179–1212.CrossRefGoogle Scholar
  47. Rosado, L. A., Márquez, A. P., & Gil, J. M. (2007). Managing branch versioning in versioned/temporal XML documents. In D. Barbosa, A. Bonifati, Z. Bellahsene, E. Hunt, & R. Unland (Eds.), XSym. Lecture notes in computer science (Vol. 4704, pp. 107–121). Springer.Google Scholar
  48. Shoham, Y. (1987). Temporal logics in AI: Semantical and ontological considerations. Artificial Intelligence, 33(1), 89–104.MathSciNetCrossRefGoogle Scholar
  49. Snodgrass, R. T. (2000). Developing time-oriented database applications in SQL. Series in data management systems. Morgan Kaufmann.Google Scholar
  50. Terenziani, P., & Snodgrass, R. T. (2004). Reconciling point-based and interval-based semantics in temporal relational databases: A treatment of the telic/atelic distinction. IEEE Transactions on Knowledge and Data Engineering, 16(5), 540–551.CrossRefGoogle Scholar
  51. Vaisman, A., Mendelzon, A. O., Molinari, E., & Tome, P. (2004). Temporal XML: Data model, query language and implementation. Technical Report. http://www.cs.toronto.edu/~avaisman/papers.html.
  52. World Wide Web Consortium (2000). Document Object Model (DOM) level 2 core specification. http://www.w3C.org/TR/DOM-Level-2-Core/.
  53. World Wide Web Consortium (1999). XML path language (XPath) version 1.0. http://www.w3.org/TR/xpath.html. W3C Reccomendation 16 November 1999.
  54. Wang, F., & Zaniolo, C. (2002). Preserving and querying histories of XML-published relational databases. In Proceedings of the second international workshop on evolution and change in data management. Lecture notes in computer science (Vol. 1909, pp. 26–38). Berlin: Springer.Google Scholar
  55. Wang, F., & Zaniolo, C. (2003). Publishing and querying the histories of archived relational databases in XML. In Proceedings of the 4th international conference on Web Information Systems Engineering (WISE 2003) (Vol. 1909, pp. 93–102). IEEE Computer Society.Google Scholar
  56. Wang, F., & Zaniolo, C. (2004). XBiT: An XML-based bitemporal data model. In P. Atzeni, W. W. Chu, H. Lu, S. Zhou, & T. W. Ling (Eds.), ER. Lecture notes in computer science (Vol. 3288, pp. 810–824). Springer.Google Scholar
  57. Wang, F., & Zaniolo, C. (2008). Temporal queries and version management in XML-based document archives. Data & Knowledge Engineering, 65(2), 304–324.CrossRefGoogle Scholar
  58. Wang, F., Zaniolo, C., & Zhou, X. (2008). ArchIS: An XML-based approach to transaction-time temporal database systems. The VLDB Journal, 7(6), 1445–1463.CrossRefGoogle Scholar
  59. Zhang, S., & Dyreson, C. E. (2002). Adding valid time to XPath. In Databases in networked information. Lecture notes in computer science (Vol. 2544, pp. 29–42).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Carlo Combi
    • 1
  • Barbara Oliboni
    • 1
  • Elisa Quintarelli
    • 2
  1. 1.Dipartimento di InformaticaUniversità degli Studi di VeronaVeronaItaly
  2. 2.Dipartimento di Elettronica e InformazionePolitecnico di MilanoMilanoItaly

Personalised recommendations