Advertisement

Journal of Intelligent Information Systems

, Volume 38, Issue 2, pp 343–391 | Cite as

Visually exploring movement data via similarity-based analysis

  • Nikos Pelekis
  • Gennady Andrienko
  • Natalia Andrienko
  • Ioannis Kopanakis
  • Gerasimos Marketos
  • Yannis Theodoridis
Article

Abstract

Data analysis and knowledge discovery over moving object databases discovers behavioral patterns of moving objects that can be exploited in applications like traffic management and location-based services. Similarity search over trajectories is imperative for supporting such tasks. Related works in the field, mainly inspired from the time-series domain, employ generic similarity metrics that ignore the peculiarity and complexity of the trajectory data type. Aiming at providing a powerful toolkit for analysts, in this paper we propose a framework that provides several trajectory similarity measures, based on primitive (space and time) as well as on derived parameters of trajectories (speed, acceleration, and direction), which quantify the distance between two trajectories and can be exploited for trajectory data mining, including clustering and classification. We evaluate the proposed similarity measures through an extensive experimental study over synthetic (for measuring efficiency) and real (for assessing effectiveness) trajectory datasets. In particular, the latter could serve as an iterative, combinational knowledge discovery methodology enhanced with visual analytics that provides analysts with a powerful tool for “hands-on” analysis for trajectory data.

Keywords

Trajectory databases Similarity measures Visual analytics 

Notes

Acknowledgements

Research partially supported by the FP7 ICT/FET Project MODAP (Mobility, Data Mining, and Privacy) and the ESF/COST Action IC0903 MOVE (Knowledge Discovery from Moving Objects), both funded by the European Union. More information about these activities is available at www.modap.org and www.move-cost.info, respectively.

References

  1. Agrawal, R., Faloutsos, C., & Swami, A. (1993). Efficient similarity search in sequence databases. In Proceedings of fourth internationall conference foundations of data organization and algorithms.Google Scholar
  2. Andrienko, G., & Andrienko, N. (2010). A general framework for using aggregation in visual exploration of movement data. The Cartographic Journal, 47(1), 22–40.Google Scholar
  3. Andrienko, G., Andrienko, N., & Wrobel, S. (2007). Visual analytics tools for analysis of movement data. ACM SIGKDD Explorations, 9(2), 38–46.CrossRefGoogle Scholar
  4. Ankerst, M., Breunig, M. M., Kriegel, H.-P., & Sander J. (1999). OPTICS: Ordering points to identify the clustering structure. In Proceedings of the 1999 ACM SIGMOD international conference on management of data.Google Scholar
  5. Berndt, J., & Clifford, J. (1996). Finding patterns in time series: A dynamic programming approach. In Advances in knowledge discovery and data mining. Menlo Park: AAAI/MIT Press.Google Scholar
  6. Bollobas, B., Das, G., Gunopulos, D., & Mannila, H. (2001). Time-series similarity problems and well-separated geometric sets. Nordic Journal of Computing, 8, 409–423.MathSciNetMATHGoogle Scholar
  7. Brinkhoff, T. (2002). A Framework for generating network-based moving objects. Geoinformatica, 6(2), 153–180.MATHCrossRefGoogle Scholar
  8. Brinkhoff, T. (2011). Network-based generator of moving objects. IAPG, Jade University Oldenburg, Germany. http://www.fh-oow.de/institute/iapg/personen/brinkhoff/generator/. Accessed 1 Feb 2011.
  9. Cai, Y., & Ng, R. (2004). Indexing spatio-temporal trajectories with Chebyshev polynomials. In Proceedings of the ACM SIGMOD international conference on management of data.Google Scholar
  10. Chan, K. P., & Fu, A. W.-C. (1999). Efficient time series matching by Wavelets. In Proceedings of international conference on data engineering.Google Scholar
  11. Chan, T. M. (1994). A simple trapezoid sweep algorithm for reporting red/blue segment intersections. In Proceedings of Canadian conference on computational geometry.Google Scholar
  12. Chazelle, B., & Edelsbrunner, H. (2002). An optimal algorithm for intersecting line segments in the plane. Journal of the ACM, 39(1), 1–54.MathSciNetCrossRefGoogle Scholar
  13. Chen, L., & Ng, R. (2004). On the marriage of edit distance and Lp norms. International Journal on Very Large Data Bases, 11, 28–46.Google Scholar
  14. Chen, L., Tamer Özsu, M., & Oria, V. (2005). Robust and fast similarity search for moving object trajectories. In Proceedings of the ACM SIGMOD international conference on management of data.Google Scholar
  15. CLUTO (2011). Karypis Lab, University of Minnesota, USA. http://glaros.dtc.umn.edu/gkhome/views/cluto/. Accessed 1 Feb 2011.
  16. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., & Keogh, E. (2008). Querying and mining of time series data: Experimental comparison of representations and distance measures. In International conference on very large data bases.Google Scholar
  17. Douglas, D., & Peucker, T. (1973). Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. The Canadian Cartographer, 10(2), 112–122.Google Scholar
  18. Frentzos, E., Gratsias, K., & Theodoridis, Y. (2007). Indexed-based most similar trajectory search. In Proceedings of international conference on data engineering.Google Scholar
  19. Fu, A. W.-C., Keogh, E., Lau, L. Y. H., Ratanamahatana, C. A., Wong, R. C.-W. (2008). Scaling and time warping in time series querying. The VLDB Journal, 17, 899–921.CrossRefGoogle Scholar
  20. Giannotti, F., Nanni, M., Pinelli, F., & Pedreschi, D. (2007). Trajectory pattern mining. In Proceedings of conference of knowledge discovery and data mining.Google Scholar
  21. Giannotti, F., & Pedreschi, D. (2008). Mobility, data mining and privacy, geographic knowledge discovery. New York: Springer.CrossRefGoogle Scholar
  22. Goh, K. S., Li, B., & Chang, T. (Eds.) (2002). Dyndex: A dynamic and non-metric space indexer. Proceedings of International Conference of SIGMM.Google Scholar
  23. Goldin, Q., & Kanellakis, C. (1995). On similarity queries for time-series data: Constraint specification and implementation. Lecture Notes in Computer Science, 976, 137–153.MathSciNetCrossRefGoogle Scholar
  24. Huttenlocher, D. P., Klanderman, G. A., & Rucklidge, W. A. (1993). Comparing images using the hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(9), 850–863.CrossRefGoogle Scholar
  25. Keim, D. A. (2005). Scaling visual analytics to very large data sets. Presentation at visual analytics workshop. Available from http://infovis.uni-konstanz.de/events/VisAnalyticsWs05/index.php. Accessed 1 Feb 2011.
  26. Keogh, E., & Kasetty, S. (2002). On the need for time series data mining benchmarks: A survey and empirical demonstration. In Proceedings of conference of knowledge discovery and data mining.Google Scholar
  27. Korn, F., Jagadish, H., & Faloutsos, C. (1997). Efficiently supporting ad hoc queries in large datasets of time sequences. In Proceedings of the ACM SIGMOD international conference on management of data.Google Scholar
  28. Kwan, M.-P., & Lee, J. (2004). Geovisualization of human activity patterns using 3-D GIS: A time-geographic approach. In M. F. Goodchild & D. G. Janelle (Eds.), Spatially integrated social science. New York: Oxford University Press.Google Scholar
  29. Laube, P., Imfeld, S., & Weibel, R. (2005). Discovering relative motion patterns in groups of moving point objects. International Journal of Geographical Information Science, 19(6), 639–668.CrossRefGoogle Scholar
  30. Lee, J.-G., Han, J., & Whang, K.-Y. (2007). Trajectory clustering: A partition-and-group framework. In Proceedings of the ACM SIGMOD international conference on management of data.Google Scholar
  31. Lee, S.-L., Chun, S.-J., Kim, D.-H., Lee, J.-H., & Chung, C.-W. (2000). Similarity search for multidimensional data sequences. In Proceedings of international conference on data engineering.Google Scholar
  32. Lin, B., & Su, J. (2005). Shapes based trajectory queries for moving objects. In Proceedings of the ACM annual international workshop on geographic information.Google Scholar
  33. Little, J. L., & Gu, Z. (2001). Video retrieval by spatial and temporal structure of trajectories. Proceedings of SPIE, 4315, 545–552.CrossRefGoogle Scholar
  34. Marketos, G., Frentzos, E., Ntoutsi, I., Pelekis, N., Raffaeta, A., & Theodoridis, Y. (2008). Building real-world trajectory warehouses. In Proceedings of the seventh ACM international workshop on data engineering for wireless and mobile access.Google Scholar
  35. Meratnia, N., & de By, R. A. (2004). Spatiotemporal compression techniques for moving point objects. In Proceedings of the international conference on extending data base technology.Google Scholar
  36. Nanni, M., & Pedreschi, D. (2006). Time-focused clustering of trajectories of moving objects. Journal of Intelligent Information Systems, 27(3), 267–289.CrossRefGoogle Scholar
  37. Pelekis, N., Frentzos, E., Giatrakos, N., & Theodoridis, Y. (2008). HERMES: Aggregative LBS via a trajectory DB engine. In Proceedings of the ACM SIGMOD international conference on management of data.Google Scholar
  38. Pelekis, N., Frentzos, E., Giatrakos, N., & Theodoridis, Y. (2011). HERMES: A trajectory DB engine for mobility-centric applications. International Journal of Knowledge-based Organizations, in press.Google Scholar
  39. Pelekis, N., Kopanakis, I., Kotsifakos, E., Frentzos, E., & Theodoridis, Y. (2009). Clustering trajectories of moving objects in an uncertain world. In Proceedings of international conference on data mining.Google Scholar
  40. Pelekis, N., Kopanakis, I., Ntoutsi, I., Marketos, G., Andrienko, G., & Theodoridis, Y. (2007). Similarity search in trajectory databases. In Proceedings of the international symposium on temporal representation and reasoning.Google Scholar
  41. Pelekis, N., & Theodoridis, Y. (2006). Boosting location-based services with a moving object database engine. In Proceedings of the international workshop on data engineering for wireless and mobile access.Google Scholar
  42. Pelekis, N., Theodoridis, Y., Vosinakis, S., & Panayiotopoulos, T. (2006). Hermes—A framework for location-based data management. In Proceedings of international conference on extending database technology.Google Scholar
  43. R-tree Portal (2011). InfoLab, University of Piraeus, Greece. http://www.rtreeportal.org. Accessed 1 Feb 2011.
  44. Rafiei, D., & Mendelzon, A. O. (2002). Efficient retrieval of similar shapes. The VLDB Journal, 11(1), 17–27.CrossRefGoogle Scholar
  45. Rinzivillo, S., Pedreschi, D., Nanni, M., Giannotti, F., Andrienko, N., & Andrienko, G. (2008). Visually–driven analysis of movement data by progressive clustering. Information Visualization, 7(3/4), 225–239.CrossRefGoogle Scholar
  46. Sakurai, Y., Yoshikawa, M., & Faloutsos, C. (2005). FTW: Fast similarity search under the time warping distance. In Proceedings of the twenty-fourth acm sigmod-sigact-sigart symposium on principles of database systems.Google Scholar
  47. Thomas, J. J., & Cook, K. A. (Eds.) (2005). Illuminating the path. The research and development agenda for visual analytics. Washington, DC: IEEE Computer Society.Google Scholar
  48. Tiakas, E., Papadopoulos, A. N., Nanopoulos, A., Manolopoulos, Y., Stojanovic, D., & Djordjevic-Kajan, S. (2009). Searching for similar trajectories in spatial networks. Journal of Systems and Software, 82(5), 772–788.CrossRefGoogle Scholar
  49. Trajcevski, G., Ding, H., Scheuermann, P., Tamassia, R., & Vaccaro, D. (2007). Dynamics-aware similarity of moving objects trajectories. In Proceedings of ACM international conference on geographic information systems.Google Scholar
  50. Vlachos, M., Gunopulos, D., & Das, G. (2002a). Rotation invariant distance measures for trajectories. In Proceedings of conference of knowledge discovery and data mining.Google Scholar
  51. Vlachos, M., Kollios, G., & Gunopulos, D. (2002b). Discovering similar multidimensional trajectories. In Proceedings of international conference on data engineering.Google Scholar
  52. Yanagisawa, Y., Akahani, J., & Satoh, T. (2003). Shape-based similarity query for trajectory of mobile objects. In Proceedings of the international conference on mobile data management.Google Scholar
  53. Yi, B.-K., Jagadish, H., & Faloutsos, C. (1998). Efficient retrieval of similar time sequences under time warping. In Proceedings of international conference on data engineering.Google Scholar
  54. Yu, H. (2006). Spatial-temporal GIS design for exploring interactions of human activities. Cartography and Geographic Information Science, 33(1), 3–19.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Nikos Pelekis
    • 1
  • Gennady Andrienko
    • 2
  • Natalia Andrienko
    • 2
  • Ioannis Kopanakis
    • 3
  • Gerasimos Marketos
    • 4
  • Yannis Theodoridis
    • 4
  1. 1.Department of Statistics and Insurance ScienceUniversity of PiraeusPiraeusGreece
  2. 2.Fraunhofer Institute Intelligent Analysis and Information SystemsSankt AugustinGermany
  3. 3.Tech. Educational Institute of CreteIerapetra CreteGreece
  4. 4.Department of InformaticsUniversity of PiraeusPiraeusGreece

Personalised recommendations