Skip to main content
Log in

Derived types in semantic association discovery

  • Published:
Journal of Intelligent Information Systems Aims and scope Submit manuscript

Abstract

Semantic associations are direct or indirect linkages between two entities that are construed from existing associations among entities. In this paper we extend our previous query language approach for discovering semantic associations with an ability to retrieve semantic associations that, besides explicitly stated (base) associations, may contain associations derived using logic-based derivation rules. As will be shown, this makes it possible to find semantic associations that are both compact and intuitive. To implement this new feature, we introduce a rewriting principle that utilizes derived associations to reduce resulting semantic associations if possible. Other proposed means to assist the interpretation of query results include answer expansion and the ordering of answers. The incorporated answer expansion feature lets the user investigate rewritten semantic associations in a query result at the desired level of detail. The ordering of answers is based on the lengths of the resulting semantic associations, whereby priority is given to shorter semantic associations which often express close and relevant relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adibi, J., Cohen, P. R., & Morrison, C. T. (2004). Measuring confidence intervals in link discovery: A bootstrap approach. In Proceedings of the 10th ACM special interest group on knowledge discovery and data mining. New York: ACM.

    Google Scholar 

  • Aleman-Meza, B., Halaschek, C., Arpinar, I. B., & Sheth, A. (2003). Context-aware semantic association ranking. In Proceedings of 1st international workshop on semantic web and databases (pp. 33–50).

  • Aleman-Meza, B., Arpinar, I. B., Ramakrishanan, C., Halaschek, C., Anyanwu, K., & Kochut, K. (2005). Semantic association identification and knowledge discovery for national security applications. Journal of Database Management, 16, 33–53.

    Article  Google Scholar 

  • Anyanwu, K., & Sheth, A. (2002). The ρ operator: Discovering and ranking associations on the semantic web. SIGMOD Record, 31, 42–47.

    Article  Google Scholar 

  • Anyanwu, K., & Sheth, A. (2003). P-queries: Enabling querying for semantic associations on the semantic web. In Proceedings of the 12th international world wide web conference (pp. 690–699). New York: ACM.

    Google Scholar 

  • Anyanwu, K., Maduko, A., & Sheth, A. (2005). SemRank: Ranking complex relationship search results on the semantic web. In Proceedings of the 14th international conference on world wide web (pp. 117–127). New York: ACM.

    Chapter  Google Scholar 

  • Boley, H. (2000). Relationships between logic programming and RDF. Lecture Notes In Computer Science, 2112, 201–218.

    Article  MATH  Google Scholar 

  • Boley, H., Tabet, S., & Wagner, G. (2001). Design rationale of RuleML: A markup language for semantic web rules. In Semantic web working symposium (pp. 381–401).

  • Borodin, A., Roberts, G. O., Rosenthal, J. S., & Tsaparas, P. (2001). Finding authorities and hubs from link structures on the world wide web. In Proceedings of the 10th international conference on world wide web (pp. 415–429). New York: ACM.

    Google Scholar 

  • Ceri, S., Gottlob, G., & Tanca, L. (1990). Logic programming and databases. New York: Springer.

    Book  Google Scholar 

  • Chen, Q., & Chu, W. (1989). HILOG: A high-order logic programming language for non-1NF deductive databases. In Proceedings of the international conference on deductive and object-oriented databases (pp. 431–452). Amsterdam: North-Holland/Elsevier.

    Google Scholar 

  • Christophides, V., Abiteboul, S., Cluet, S., & Scholl, M. (1994). From structured documents to novel query facilities. In Proceedings of the 1994 ACM SIGMOD international conference on management of data (pp. 313–324). New York: ACM.

    Chapter  Google Scholar 

  • Christophides, V., Cluet, S., & Moerkotte, G. (1996). Evaluating queries with generalized path expressions. In Proceedings of the 1996 ACM SIGMOD international conference on management of data (pp. 413–422). New York: ACM.

    Chapter  Google Scholar 

  • Colmerauer, A. (1985). Prolog in 10 figures. Communications of the ACM, 28, 1296–1310.

    Article  MathSciNet  Google Scholar 

  • Dijkstra, E. W. (1959). A note on two problems in connection with graphs. Numerische Mathematik, 1, 269–271.

    Article  MathSciNet  MATH  Google Scholar 

  • Earley, J. (1970). An efficient context-free parsing algorithm. Communications of the ACM, 13, 94–102.

    Article  MATH  Google Scholar 

  • Egghe, L. (Ed.) (2006). Special issue on informetrics. Information Processing and Management, 42, 1405–1656.

    Article  Google Scholar 

  • Freeman, L. C. (1979). Centrality in social networks: Conceptual clarification. Social Networks, 1, 215–239.

    Article  Google Scholar 

  • Garton, L., Haythornthwaite, C., & Wellman, B. (1997). Studying online social networks. Journal of Computer-Mediated Communication, 3, 1–27.

    Google Scholar 

  • Hammer, M., & McLeod, D. (1981). Database description with SDM: A semantic database model. ACM Transactions on Database Systems, 6, 351–386.

    Article  Google Scholar 

  • Harrison, M. A. (1978). Introduction to formal language theory. Boston: Addison-Wesley.

    MATH  Google Scholar 

  • Hristidis, V., & Papakonstantinou, Y. (2002). DISCOVER: Keyword search in relational databases. In Proceedings of the 28th VLDB conference (pp. 670–681). San Francisco: Kaufmann.

    Google Scholar 

  • Hull, R., & King, R. (1987). Semantic database modeling: Survey, applications, and research issues. ACM Computing Surveys, 19, 201–260.

    Article  Google Scholar 

  • Ioannidis, Y. E., & Lashkari, Y. (1994). Incomplete path expressions and their disambiguation. In Proceedings of the 1994 ACM SIGMOD international conference on management of data (pp. 138–149). New York: ACM.

    Chapter  Google Scholar 

  • Järvelin, K., Ingwersen, P., & Niemi, T. (2000). A user-oriented interface for generalised informetric analysis based on applying advanced data modelling techniques. Journal of Documentation, 56, 250–278.

    Article  Google Scholar 

  • Kasami, T. (1967). A note on computing time for recognition of languages generated by linear grammars. Information and Control, 10, 209–214.

    Article  MathSciNet  MATH  Google Scholar 

  • Knuth, D. E. (1965). On the translation of languages from left to right. Information Control, 8, 607–639.

    Article  MathSciNet  MATH  Google Scholar 

  • Kovalerchuk, B., & Vityaev, E. (2003). Detecting patterns of fraudulent behavior in forensic accounting. In Proceedings of 7th international conference on knowledge-based intelligent information and engineering systems (pp. 502–509). Amsterdam: IOS.

    Chapter  Google Scholar 

  • Lewis, P. M., & Stearns, R. (1968). Syntax-directed transduction. Journal of the ACM, 15, 465–488.

    Article  MATH  Google Scholar 

  • Lin, S., & Chalupsky, H. (2003a). Unsupervised link discovery in multi-relational data via rarity analysis. In Proceedings of the 3rd IEEE international conference on data mining (pp. 171–178). Los Alamitos: IEEE Computer Society.

    Google Scholar 

  • Lin, S., & Chalupsky, H. (2003b). Using unsupervised link discovery methods to find interesting facts and connections in a bibliography dataset. SIGKDD Explorations, 5, 173–178.

    Article  Google Scholar 

  • Linz, P. (1990). An introduction to formal languages and automata. Lexington: Heath.

    MATH  Google Scholar 

  • Liu, M. (1995). Relationlog: A typed extension to datalog with sets and tuples (extended abstract). In Proceedings of the international symposium on logic programming (pp. 83–97). Cambridge: MIT.

    Google Scholar 

  • Liu, M. (1998). Relationlog: A typed extension to datalog with sets and tuples. The Journal of Logic Programming, 36, 271–299.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, M. (1999). Deductive database languages: Problems and solutions. ACM Computing Surveys, 31, 27–62.

    Article  MathSciNet  Google Scholar 

  • Maier, D., Ullman, J. D., & Vardi, M. Y. (1984). On the foundations of the universal relation model. ACM Transactions on Database Systems, 9, 283–308.

    Article  MathSciNet  MATH  Google Scholar 

  • Manola, F., & Miller, E. (2004). RDF primer, W3C recommendation. http://www.w3.org/TR/rdf-primer/ (current May 3, 2006).

  • Mitchell, J. C. (1969). The concept and use of social networks. In J. C. Mitchell (Ed.), Social networks in urban situations. Manchester: Bobbs-Merrill.

    Google Scholar 

  • Mooney, R. J., Melville, P., Tang, L. R., Shavlik, J., de Castro Dutra, I., Page, D., et al. (2002). Relational data mining with inductive logic programming for link discovery. In Proceedings of the national science foundation workshop on next generation data mining. Menlo Park: AAAI/MIT Press.

    Google Scholar 

  • Naqvi, S., & Tsur, S. (1989). A logical language for data and knowledge bases. New York: Computer Science Press.

    Google Scholar 

  • Niemi, T., & Jämsen, J. (2007). A query language for discovering semantic associations, Parts I and II. Journal of the American Society for Information Science and Technology, 58, 1559–1568, 1686–1700.

    Article  Google Scholar 

  • Niemi, T., Junkkari, M., & Järvelin, K. (2002). Relational deductive object-oriented modeling (RDOOM) approach for finding, representing and integrating application-specific concepts. International Journal of Software Engineering and Knowledge Engineering, 12, 415–451.

    Article  Google Scholar 

  • Niemi, T., Hirvonen, L., & Järvelin, K. (2003). Multidimensional data model and query language for informetrics. Journal of the American Society for Information Science and Technology, 54, 939–951.

    Article  Google Scholar 

  • Olivé, A., & Teniente, E. (2002). Derived types and taxonomic constraints in conceptual modeling. Information Systems, 27, 391–409.

    Article  MATH  Google Scholar 

  • Sterling, L., & Shapiro, E. (1986). The art of Prolog: Advanced programming techniques. Cambridge: MIT Press.

    MATH  Google Scholar 

  • Tsur, S., & Zaniolo, C. (1986). LDL: A logic-based data language. In Proceedings of the 12th international conference on very large data bases (pp. 33–41). San Francisco: Kaufmann.

    Google Scholar 

  • Ullman, J. D. (1989). Principles of database and knowledge-base systems. Rockville: Computer Science Press.

    Google Scholar 

  • Ullman, J. D. (1991). The interface between language theory and database theory. In Theoretical studies in computer science (pp. 133–151). San Diego: Academic.

    Google Scholar 

  • Wang, J., Chen, Z., Tao, L., Ma, W. Y., & Wenyin, L. (2002). Ranking user’s relevance to a topic through link analysis on web logs. In Proceedings of the 4th international workshop on web information and data management (pp. 49–54). New York: ACM.

    Google Scholar 

  • Xu, J., & Chen, H. (2004). Fighting organized crimes: Using shortest-path algorithms to identify associations in criminal networks. Decision Support Systems, 38, 473–487.

    Article  Google Scholar 

  • Younger, D. (1967). Recognition and parsing of context free languages in time n3. Information and Control, 10, 189–208.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janne Jämsen.

Appendices

Appendix 1: Entity and relationship types in the sample context

base entity types:

person, enterprise, crime, apartment

base association types:

  • motherhood (Mother<female>, Child<person>)

  • fatherhood (Father<male>, Child<person>)

  • employment_excl_management (Employee<person>, Enterprise <enterprise>,

  •     Salary (number))

  • management (Manager<person>, Enterprise<enterprise>, Salary (number),

  •     RightOfOptions<{yes, no}>)

  • commitment (Person<person>, Crime<crime>)

  • own_apartment (Owner<person>, Apartment<apartment>)

  • rented_apartment (Tenant<person>, Lessor<person>,

  •     Apartment<apartment>, rent<number>)

base relationship types (other than association types):

  • person_info (Person<person>, FirstName<string>,LastName<string>,

  •     Sex<{m, f}>)

  • crime_type (Crime<crime>, Type<{theft, robbery, homicide,

  •     white_collar_crime}>)

derived entity types:

  • male, female, suspicious_person

derived association types:

  • parenthood (Parent<person>, Child<person>).

  • co_parenthood (Mother <female>, Father<male>)

  • co_worker_parenthood (Mother<female>, Father<male>, Child<person>)

  • ancestorhood (Ancestor<person>, Descendant<person>)

  • grandparenthood (Grandparent< person>, Grandchild<person>)

  • grandfatherhood (Grandfather<male>, Grandchild<person>)

  • grandmotherhood (Grandmother<female>, Grandchild<person>)

  • employment (Employee<person>, Enterprise<enterprise>)

  • self_employed_entrepreneurship (Entrepreneur<person>, Enterprise<enterprise>)

  • co_workership (CoWorker1<person>, CoWorker2<person>)

  • superiorship (Superior<person>, Employee<person>)

  • complicity (Accomplice1<person>, Accomplice2<person>)

  • common_apartment (Person1<person>, Person2<person>)

  • living (Person< person>, Apartment< apartment>)

Appendix 2: Sample rules

r 9 :

male(Person) :- person_info (Person, Firstname, Lastname, m).

r 10 :

female (Person) :- person_info (Person, Firstname, Lastname, f).

r 11 :

suspicious_person (Person) :-

commitment (Person, Crime), crime_type (Crime,robbery).

r 12 :

suspicious_person (Person) :-

commitment (Person,Crime), crime_type (Crime, homicide).

r 13 :

parenthood (Parent,Child) :- motherhood (Parent, Child).

r 14 :

parenthood (Parent, Child) :- fatherhood (Parent, Child).

r 15 :

co_parenthood (Mother, Father) :-

motherhood (Mother, Child), fatherhood (Father, Child).

r 16 :

co_worker_parenthood (Mother, Father, Child) :-

motherhood (Mother, Child), fatherhood (Father, Child),

co_workership (Mother, Father).

r 17 :

ancestorhood (Ancestor, Descendant):-

parenthood (Ancestor, Child), ancestorhood (Child, Descendant).

r 18 :

ancestorhood (Ancestor, Descendant) :- parenthood (Ancestor, Descendant).

r 19 :

grandparenthood (Grandparent, Grandchild) :-

parenthood (Grandparent, Parent), parenthood (Parent, Grandchild).

r 20 :

grandfatherhood (Grandfather, Grandchild):-

fatherhood (Grandfather, Parent), parenthood (Parent, Grandchild).

r 21 :

grandmotherhood (Grandmother, Grandchild) :-

parenthood (Grandmother, Parent), female (Grandmother), parenthood (Parent, Grandchild).

r 22 :

employment (Employee, Enterprise, Salary) :-

employment_excl_management (Employee, Enterprise, Salary).

r 23 :

employment (Employee, Enterprise, Salary) :-

management (Employee, Enterprise, Salary, RightOfOptions).

r 24 :

self_employed_entrepreneurship (Entrepreneur, Enterprise) :-

management (Entrepreneur, Enterprise, Salary1),

\(\neg\) employment_excl_management (Employee, Enterprise, Salary2).

r 25 :

co_workership (CoWorker1, CoWorker2) :-

employment (CoWorker1, Enterprise, Salary1),

employment (CoWorker2, Enterprise, Salary2),

\(\neg\) CoWorker1 = CoWorker2.

r 26 :

superiorship (Superior, Employee) :-

management (Superior, Enterprise, Salary1, RightOfOptions),

employment_excl_management (Employee, Enterprise, Salary2).

r 27 :

complicity (Accomplice1, Accomplice2) :-

commitment (Accomplice1, Crime), commitment (Accomplice2, Crime),

\(\neg\) Accomplice1 = Accomplice2.

r 28 :

common_apartment (Person1, Person2) :-

living (Person1, Apartment), living (Person2, Apartment),

\(\neg\) Person1 = Person2.

r 29 :

living (Person, Apartment) :- own_apartment (Person, Apartment).

r 30 :

living (Person, Apartment) :-

rented_apartment (Person, Lessor, Apartment, Rent).

Appendix 3: Base facts in the sample context

entity facts:

  • person (#p9),..., person (#p23)

  • enterprise (#e1)

  • crime (#c1),..., crime (#c5)

  • apartment (#a1),..., apartment (#a5)

association facts:

  • motherhood (#p10, #p11)

  • motherhood (#p10, #p12)

  • motherhood (#p13, #p9)

  • motherhood (#p13, #p14)

  • motherhood (#p16, #p10)

  • motherhood (#p23, #p22)

  • fatherhood (#p9, #p11)

  • fatherhood (#p9, #p12)

  • fatherhood (#p15, #p13)

  • fatherhood (#p19, #p20)

  • employment_excl_management (#p16, #e1, 2000)

  • employment_excl_management (#p17, #e1, 2500)

  • management (#p15, #e1,4000,yes)

  • commitment (#p9, #c1)

  • commitment (#p18, #c1)

  • commitment (#p18, #c2)

  • commitment (#p19, #c3)

  • commitment (#p21, #c4)

  • commitment (#p21, #c5)

  • commitment (#p22, #c4)

  • commitment (#p22, #c5)

  • own_apartment (#p9, #a1)

  • own_apartment (#p13, #a2)

  • own_apartment (#p14, #a2)

  • own_apartment (#p15, #a4)

  • own_apartment (#p17, #a5)

  • own_apartment (#p18, #a5)

  • rented_apartment (#p19, #p10, #a3, 200)

base relationship facts (other than association facts):

  • person_info (#p9, thomas, selsor, m)

  • person_info (#p10, sonya, selsor, f)

  • person_info (#p11, tina, selsor, f)

  • person_info (#p12, tim, selsor, m)

  • person_info (#p13, ann, selsor, f)

  • person_info (#p14, maria, macpattern, f)

  • person_info (#p15, john, cassius, m)

  • person_info (#p16, cathrine, freeman, f)

  • person_info (#p17, lisa, curley, f)

  • person_info (#p18, sam, suspicious, m)

  • person_info (#p19, richard, risk, m)

  • person_info (#p20, tony, risk, m)

  • person_info (#p21, lars, leery, m)

  • person_info (#p22, robbie, robber, m)

  • person_info (#p23, margareth, robber, f)

  • crime_type (#c1, theft)

  • crime_type (#c2, robbery)

  • crime_type (#c3, homicide)

  • crime_type (#c4, robbery)

  • crime_type (#c5, theft)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jämsen, J., Niemi, T. & Järvelin, K. Derived types in semantic association discovery. J Intell Inf Syst 35, 213–244 (2010). https://doi.org/10.1007/s10844-009-0094-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10844-009-0094-7

Keywords

Navigation