Journal of Intelligent Information Systems

, Volume 32, Issue 3, pp 297–323 | Cite as

The POINT approach to represent now in bitemporal databases

  • Bela Stantic
  • Abdul Sattar
  • Paolo TerenzianiEmail author


Most modern database applications involve a significant amount of time dependent data and a significant portion of this data is now-relative. Now-relative data are a natural and meaningful part of every temporal database as well as being the focus of most queries. Previous studies indicate that the choice of the representation of now significantly influences the efficiency of accessing bitemporal data. In this paper we propose and experimentally evaluate a novel approach to represent now that we termed the POINT approach, in which now-relative facts are represented as points on the transaction-time and/or valid-time line. Furthermore, in the POINT approach we propose a logical query transformation that relies on the above representation and on the geometry features of spatial access methods. Such a logical query transformation enables off-the-shelf spatial indexes to be used. We empirically prove that the POINT approach is efficient on now-relative bitemporal data, outperforming the maximum timestamp approach that has been proven to the best approach to now-relative data in the literature, independently of the indexing methodology (B  + - tree vs R *- tree) being used. Specifically, if spatial indexing is used, the POINT approach outperforms the maximum timestamp approach to the extent of factor more than 10, both in number of disk accesses and CPU usage.


Temporal databases Now-related data Querying bitemporal data Efficient data access Bitemporal data indexing Experimental evaluation 



The authors are very grateful to the anonymous referees, for their in-depth review of the paper, and for their constructive and inspiring criticism. We would like to thank John Thornton for his insightful suggestions in early version of this work.


  1. Beckmann, N., Kriegel, H.-P., Schneider, R., & Seeger, B. (1990). The R*-tree: An efficient and robust access method for points and rectangles. In Proceedings of the 1990 ACM SIGMOD international conference on management of data (pp. 322–331). New York: ACM.CrossRefGoogle Scholar
  2. Bliujute, R., et al. (2000). Light-weight indexing of general bitemporal data. In Statistical and scientific database management (pp. 125–138).Google Scholar
  3. Bliujute, R., Jensen, C. S., Saltenis, S., & Slivinskas, G. (1998). R-Tree based indexing of now-relative bitemporal data. In VLDB’98, Proceedings of 24rd international conference on very large data bases (pp. 345–356). New York, USA.Google Scholar
  4. Clifford, J., Dyreson, C., Isakowitz, T., Jensen, C. S., & Snodgrass, R. T. (1997). On the semantics of “now” in databases. ACM Transactions on Database Systems (TODS), 22(2), 171–214.CrossRefGoogle Scholar
  5. Date, C. J., Darwen, H., & Lorentzos, N. A. (2002). Temporal data and the relational model, ISBN: 1-55860-855-9. San Francisco: Morgan Kaufmann.Google Scholar
  6. Snodgras, R. T. (1987). The temporal query language Tquel. ACM TODS, 12(2), 247–298.CrossRefGoogle Scholar
  7. Gaede, V., & Gunther, O. (1998). Multidimensional access methods. ACM Computing Surveys (CSUR), 30(2), 170–231.CrossRefGoogle Scholar
  8. Green, C. D. (2002). Oracle9i Database Performance Tuning Guide and Reference, Release 2 (9.2), Part No. A96533-02.
  9. Hayes, P. (1996). A catalog of temporal theories. Technical Report UIUC-BI-AI-96-01, University of Illinois.Google Scholar
  10. Hellerstein, J. M., Koutsupias, E., & Papadimitriou, C. H. (1997). On the analysis of indexing schemes. In 16th ACM SIGACT-SIGMOD-SIGART symposium on principles of database systems (pp. 249–256).Google Scholar
  11. Jensen, C. S., & Snodgrass, R. (1999). Temporal data management. IEEE Transactions on Knowledge and Data Engineering, 11(1), 36–44.CrossRefGoogle Scholar
  12. Jensen, C. S. (2000). Introduction to temporal databases, research.
  13. Jensen, C. S., Snodgrass, R. T., & Soo, M. D. (1995). The tsql2 data model. In The TSQL2 temporal query language, (pp. 157–240).Google Scholar
  14. Torp, K., Jensen, C. S., & Bohlen, M. H. (1997). Layered temporal DBMS: Concepts and techniques. In Database Systems for Advanced Applications, (pp. 371–380).Google Scholar
  15. Kumar, A., Tsotras, V. J., & Faloutsos, C. (1998). Designing access methods for bitemporal databases. IEEE Transactions on Knowledge and Data Engineering, 10(1), 1–20.CrossRefGoogle Scholar
  16. Kumar, A., Tsotras, V. J., & Faloutsos, C. (1995). Access methods for bi-temporal databases. In Proceedings of the international workshop on temporal databases, (pp. 235–254).Google Scholar
  17. Melton, J., & Simon, A. R. (2002). SQL:1999 - Understanding relational language components, ISBN: 1-55860-456-1. San Francisco: Morgan Kaufman.Google Scholar
  18. Murray, C. (2002). Oracle Spatial User’s Guide and Reference, Release 9.2, Part No. A96630-01.
  19. Oracle. (2000). Oracle Spatial 8.1.6 performance-related characteristics, an oracle technical white paper.
  20. Fenk, R., Markl, V., & Bayer, R. (2002). Interval processing with the UB-tree. In Proceedings of the 2002 international symposium on database engineering and applications (pp. 12–22).Google Scholar
  21. Salzberg, B., & Tsotras, V. J. (1999). Comparison of access methods for time evolving data. ACM Computing Surveys, 31(2), 158–221.CrossRefGoogle Scholar
  22. Snodgrass, R. T. (1995). The TSQL2 temporal query language, ISBN:0-7923-9614-6. Dordrecht: Kluwer Academic.zbMATHGoogle Scholar
  23. Snodgrass, R. T., & Ahn, I. (1986). Temporal databases. IEEE Computer, 19(9), 35–42.Google Scholar
  24. Stantic, B., Khanna, S., & Thornton, J. (2004). An Efficient method for indexing now-relative bitemporal data. In Proceeding of the 15th Australasian database conference (ADC2004), Denidin, New Zealand, 26(2), 113–122.Google Scholar
  25. Stantic, B., Thornton, J., & Sattar, A. (2003). A novel approach to model now in temporal databases. In Proceeding of the 10th international symposium on temporal representation and reasoning (TIME-ICTL 2003), Cairns (pp. 174–181).Google Scholar
  26. Tsotras, V. J., Jensen, C. S., & Snodgrass, R. T. (1998). An extensible notation for spatiotemporal index queries. ACM SIGMOD Record, 27(1), 47–53.CrossRefGoogle Scholar
  27. Zikopoulos, C., Baklarz, G., deRoos, D., & Melnyk, R. B. (2003). DB2(R) version 8: The official guide - chapter 4, ISBN: 0131401580. Detroit: IBM.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Institute for Integrated and Intelligent SystemsGriffith UniversityBrisbaneAustralia
  2. 2.Department of Computer ScienceUniversity of Piemonte OrientaleAlessandriaItaly

Personalised recommendations