Skip to main content
Log in

An adaptive partitioning approach for mining discriminant regions in 3D image data

  • Published:
Journal of Intelligent Information Systems Aims and scope Submit manuscript

Abstract

Mining discriminative spatial patterns in image data is an emerging subject of interest in medical imaging, meteorology, engineering, biology, and other fields. In this paper, we propose a novel approach for detecting spatial regions that are highly discriminative among different classes of three dimensional (3D) image data. The main idea of our approach is to treat the initial 3D image as a hyper-rectangle and search for discriminative regions by adaptively partitioning the space into progressively smaller hyper-rectangles (sub-regions). We use statistical information about each hyper-rectangle to guide the selectivity of the partitioning. A hyper-rectangle is partitioned only if its attribute cannot adequately discriminate among the distinct labeled classes, and it is sufficiently large for further splitting. To evaluate the discriminative power of the attributes corresponding to the detected regions, we performed classification experiments on artificial and real datasets. Our results show that the proposed method outperforms major competitors, achieving 30% and 15% better classification accuracy on synthetic and real data respectively while reducing by two orders of magnitude the number of statistical tests required by voxel-based approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal, R., Ghosh, S., Imielinski, T., Iyer, B., & Swami, A. (1992). An interval classifier for database mining applications. VLDB Conference. Vancouver, BC, Canada.

  • Agrawal, R., Imielinski, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. ACM SIGMOD Conference on Management of Data. Washington, DC.

  • Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., & Verkamo, A. I. (1996). Fast discovery of association rules. Advances in knowledge discovery and data mining.

  • Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. VLDB Conference. Santiago, Chile.

  • Agresti, A. (1996). An introduction to categorical data analysis. New York: Wiley.

    MATH  Google Scholar 

  • Aladjem, M. (1998). Nonparametric discriminant analysis via recursive optimization of Patrick–Fisher distance. IEEE Transactions on Systems Man and Cybernetics, 28B, 292–299.

    Google Scholar 

  • Andersen, E. (1997). Introduction to the statistical analysis of categorical data. Berlin: Springer Verlag.

    MATH  Google Scholar 

  • Bernstein, F. C., Koetzle, T. F., Williams, G. J., Meyer, E. F., Jr., Brice, M. D., Rodgers, J. R., et al. (1977). The protein data bank: a computer-based archival file for macromolecular structures. Journal of Molecular Biology, 112, 535–542.

    Article  Google Scholar 

  • Bhattacharyya, A. (1943). On a measure of divergence between two statistical populations defined by their probability distributions. Bulletin of the Calcutta Mathematical Society, 35, 99–110.

    MATH  MathSciNet  Google Scholar 

  • Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford: Clarendon Press.

    Google Scholar 

  • Castelli, V., & Kontoyiannis, I. (2002). An efficient recursive partitioning algorithm for classification using wavelets. Brown University.

  • Castelli, V., Kontoyiannis, I., Li, C. S., & Turek, J. J. (1996). Progressive classification in the compressed domain for large EOS satellite databases. IEEE ICASSP.

  • Ching, J., & Wong, A. (1995). Class-dependent discretization for inductive learning from continuous and mixed-mode data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17, 641–651.

    Article  Google Scholar 

  • Conover, W. J. (1999). Practical nonparametric statistics. New York: Wiley.

    Google Scholar 

  • Cormen, T. H., Leiserson, C. E., & Rivest, R. L. (2001). Introduction to algorithms. Cambridge: MIT Press.

    MATH  Google Scholar 

  • Davatzikos, C. (2004). Why voxel-based morphometric analysis should be used with great caution when characterizing group differences. NeuroImage, 23, 17–20.

    Article  Google Scholar 

  • Devore, J. L. (2000). Probability and statistics for engineering and the sciences. Belmont: International Thomson Publishing Company.

    Google Scholar 

  • Duda, R., Hart, P., & Stork, D. (2000). Pattern classification. John Wiley and Sons.

  • Ester, M., Kriegel, H.-P., & Sander, J. (1977). Spatial data mining: A database approach. Symposium on Large Spatial Databases. Berlin, Germany: Springer.

    Google Scholar 

  • Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial database with noise. International conference on knowledge discovery in databases and data mining (KDD-96). Portland, OR.

  • Euripides, G. M., Petrakis, M., & Faloutsos, C. (1997). Similarity searching in medical image databases. IEEE Transactions on Knowledge and Data Engineering, 9, 435–447.

    Article  Google Scholar 

  • Faloutsos, C. (1996). Searching multimedia databases by content. The Netherlands: Kluwer Academic.

    MATH  Google Scholar 

  • Flashman, L. A., Wishart, H. A., & Saykin, A. J. (2003). Boundaries between normal aging and dementia: Perspectives from neuropsychological and neuroimaging investigations. In V. O. B. Emory, & T. E. Oxman (Eds.), Dementia: Presentations, differential diagnosis and nosology. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Huang, Q., Dom, B., et al. (1995). Query by image and video content: The QBIC system. IEEE Computer, 23–32.

  • Ford, J., Farid, H., Makedon, F., Flashman, L. A., Mcallister, T. W., Megalooikonomou, V., et al. (2003). Patient classification of fMRI activation maps. 6th annual international conference on medical image computing and computer assisted intervention—MICCAI’03. Montreal, Canada: Springer-Verlag.

    Google Scholar 

  • Fotheringham, S., & Rogerson, P. (1994). Spatial analysis and GIS. Taylor and Francis.

  • Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J. P., Frith, C. D., & Frackowiak, R. S. J. (1995). Statistical parametric maps in functional imaging: a general linear approach. Human Brain Mapping, 2, 189–210.

    Article  Google Scholar 

  • Fujimura, K., Toriya, H., Yamaguchi, K., & Kunii, T. L. (1983). Oct-tree algorithms for solid modeling. In T. L. Kunii (Ed.), Computer graphics—theory and applications. Springer Verlag.

  • Fukunaga, K. (1990). Introduction to statistical pattern recognition. Academic Press.

  • Gaede, V., & Gunter, O. (1998). Multidimensional access methods. ACM Computing Surveys, 30, 170–231.

    Article  Google Scholar 

  • Gallant, S. I. (1990). Perceptron-based learning algorithms. IEEE Transactions on Neural Networks, 1, 179–191.

    Article  Google Scholar 

  • Gerring, J. P., Brady, K. D., Chen, A., Vasa, R., Grados, M., Bandeen-Roche, K. J., et al. (1998). Premorbid prevalence of ADHD and development of secondary ADHD after closed head injury. Journal of the American Academy of Child and Adolescent Psychiatry, 37, 647–654.

    Article  Google Scholar 

  • Guting, R. H. (1994). An introduction to spatial database systems. VLDB Journal, 3, 357–400.

    Article  Google Scholar 

  • Hagan, M., & Menhaj, M. B. (1994). Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks, 5, 989–993.

    Article  Google Scholar 

  • Han, J., Chen, M.-S., & Yu, P. S. (1996). Data mining: an overview from database perspective. IEEE Transactions on Knowledge and Data Engineering, 8, 866–883.

    Article  Google Scholar 

  • Haykin, S. (1999). Neural networks, A comprehensive foundation. Prentice Hall.

  • Kaufman, A., Cohen, D., & Yagel, R. (1993). Volume graphics. IEEE Computer.

  • Keim, D. A. (1999). Geometry-based Similarity Search of 3D Spatial Databases. ACM SIGMOD Conference.

  • Kontos, D., & Megalooikonomou, V. (2005). Fast and effective characterization for classification and similarity searches of 2D and 3D spatial region data. Pattern Recognition, 38, 1831–1846.

    Article  Google Scholar 

  • Kontos, D., Megalooikonomou, V., Prokrajac, D., Lazarevic, A., Obradovic, Z., Ford, J., et al. (2004). Extraction of discriminative functional MRI activation patterns and an application to Alzheimer’s Disease. 7th international conference on medical image computing and computer assisted intervention—MICCAI. Rennes-St.Malo, France: Springer-Verlag.

    Google Scholar 

  • Koperski, K., & Han, J. (1995). Discovery of spatial association rules in geographic information databases. 4th international symposium on large spatial databases (SSD’95). Portland, Maine.

  • Kriegel, H.-P., & Seidl, T. (1998). Approximation-based similarity search for 3-D surface segments. Geoinformatica, 2, 113–147.

    Article  Google Scholar 

  • Lazarevic, A., & Obradovic, Z. (2002). Knowledge discovery in multiple spatial databases. Journal of Neural Computing and Applications, 10, 339–350.

    Article  MATH  Google Scholar 

  • Lazarevic, A., Pokrajac, D., Megalooikonomou, V., & Obradovic, Z. (2001). Distinguishing among 3-D distributions for brain image data classification. 4th international conference on neural networks and expert systems in medicine and healthcare. Milos Island, Greece.

  • Lloyd, S. P. (1982). Least squares quantization in PCM. IEEE Transactions on Information Theory, 28, 129–137.

    Article  MATH  MathSciNet  Google Scholar 

  • McLachan, G. J., & Krishnan, T. (1996). The EM Algorithm and Extensions. John Wiley & Sons.

  • Megalooikonomou, V., Davatzikos, C., & Herskovits, E. H. (2000a). A simulator for evaluating methods for the detection of lesion-deficit associations. Human Brain Mapping, 10, 61–73.

    Article  Google Scholar 

  • Megalooikonomou, V., Ford, J., Shen, L., Makedon, F., & Saykin, A. (2000b). Data mining in brain imaging. Statistical Methods in Medical Research, 9, 359–394.

    Article  MATH  Google Scholar 

  • Megalooikonomou, V. (2002). Evaluating the performance of association mining methods in 3-D medical image databases. 2nd SIAM International Conference on Data Mining (SDM). Arlington, VA.

  • Megalooikonomou, V., Pokrajac, D., Lazarevic, A., & Obradovic, Z. (2002). Effective classification of 3-D image data using partitioning methods. SPIE 14th annual symposium in electronic imaging: Conference on visualization and data analysis. San Jose, CA.

  • Mitchell, T. (1997). Machine learning. Boston: McGraw-Hill.

    MATH  Google Scholar 

  • Ng, R. T., & Han, J. (1994). Efficient and effective clustering methods for spatial data mining. VLDB Conference. New York City, NY.

  • Pokrajac, D., Lazarevic, A., Megalooikonomou, V., & Obradovic, Z. (2001). Classification of brain image data using measures of distributional distance. 7th Annual meeting of the organization for human brain mapping (OHBM01). Brighton, UK.

  • Pokrajac, D., Megalooikonomou, V., Lazarevic, A., Kontos, D., & Obradovic, Z. (2005). Applying spatial distribution analysis techniques to classification of 3D medical images. Artificial Intelligence in Medicine, 33, 261–280.

    Article  Google Scholar 

  • Quinlan, J.R. (1993). C4.5: Programs for machine learning, Morgan Kaufmann, Los Altos. Palo Alto: San Francisco.

    Google Scholar 

  • Riedmiller, M., & Braun, H. (1993). A direct adaptive method for faster backpropagation learning: The RPROP algorithm. IEEE International Conference on Neural Networks.

  • Samet, H. (1984). The quadtree and related hierachical data structure. ACM Computing Surveys, 16, 187–260.

    Article  MathSciNet  Google Scholar 

  • Saykin, A. J., Flashman, L. A., Frutiger, S. A., Johnson, S. C., Mamourian, A. C., Moritz, C. H., et al. (1999). Neuroanatomic substrates of semantic memory impairment in Alzheimer’s disease: patterns of functional MRI activation. Journal of the International Neuropsychological Society, 5, 377–392.

    Article  Google Scholar 

  • Sheikholeslami, G., Chatterjee, S., & Zhang, A. (1998). WaveCluster: A multi-resolution clustering approach for very large spatial databases. VLDB Conference. New York City, NY.

  • Smeulders, A. W. M., Worring, M., Santint, S., Gupta, A., & Jain, R. (2000). Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 1349–1380.

    Article  Google Scholar 

  • Son, E.-J., Kang, I.-S., Kim, T.-W., & Li, K.-J. (1998). A spatial data mining method by clustering analysis. The 6th International Symposium on Advances in Geographic Information Systems, GIS’98.

  • Wang, W., Yang, J., & Muntz, R. (1997). STING: A statistical information grid approach to spatial data mining. The 23rd international conference on very large data bases.

  • Worth, A., Makris, N., Caviness, V., & Kennedy, D. (1997). Neuroanatomical segmentation in MRI: Technological objectives. International Journal of Pattern Recognition and Artificial Intelligence, 11, 1161–1187.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasileios Megalooikonomou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Megalooikonomou, V., Kontos, D., Pokrajac, D. et al. An adaptive partitioning approach for mining discriminant regions in 3D image data. J Intell Inf Syst 31, 217–242 (2008). https://doi.org/10.1007/s10844-007-0043-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10844-007-0043-2

Keywords

Navigation