Advertisement

Journal of Intelligent Information Systems

, Volume 31, Issue 1, pp 85–107 | Cite as

Content-based image retrieval by hierarchical linear subspace method

  • Andreas WichertEmail author
Article

Abstract

We describe a hierarchical linear subspace method to query large on-line image databases using image similarity as the basis of the queries. The method is based on the generic multimedia indexing (GEMINI) approach which is used in the IBM query through the image content search system. Our approach is demonstrated on image indexing, in which the subspaces correspond to different resolutions of the images. During content-based image retrieval, the search starts in the subspace with the lowest resolution of the images. In this subspace, the set of all possible similar images is determined. In the next subspace, additional metric information corresponding to a higher resolution is used to reduce this set. This procedure is repeated until the similar images can be determined. For evaluation we used three image databases and two different subspace sequences.

Keywords

Contend-based image retrieval Query by image content Subspace method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bei, C.-D., & Gray, R. M. (1985). An improvement of the minimum distortion encoding algorithm for vector quantization. IEEE Transactions on Communications, 33(10), 1132–1133.CrossRefGoogle Scholar
  2. Blei, D. M., & Jordan, M. I. (2003). Modeling annotated data. In Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval (pp. 127–134).Google Scholar
  3. Böhm, C., Berchtold, S., & Kei, D., A. K. (2001). Searching in high-dimensional spaces—Index structures for improving the performance of multimedia databases. ACM Computing Surveys, 33(3), 322–373.CrossRefGoogle Scholar
  4. Burt, P. J., & Adelson, E. H. (1983). The laplacian pyramidas a compact image code. IEEE Transactions on Communications, 31(4), 532–540.CrossRefGoogle Scholar
  5. Chen, Y., & Wang, J. Z. (2004). Image categorization by learning and reasoning with regions. Journal of Machine Learning Research, 5, 913–939.Google Scholar
  6. Dunckley, L. (2003). Multimedia databases, an object-rational approach. Reading, MA: Addison-Wesley.Google Scholar
  7. Faloutsos, C. (1999). Modern information retrieval. In R. Baeza-Yates & B. Ribeiro-Neto (Eds.), Modern information retrieval, Chap. 12 (pp. 345–365). Reading, MA: Addison-Wesley.Google Scholar
  8. Faloutsos, C., Barber, R., Flickner, M., Hafner, J., Niblack, W., Petkovic, D., et al. (1994). Efficient and effective querying by image content. Journal of Intelligent Information Systems, 3(3/4), 231–262.CrossRefGoogle Scholar
  9. Flickner, M., Sawhney, H., Niblck, W., Ashley, J., Huang, Q., Dom, B., et al. (1995). Query by image and video content the QBIC system. IEEE Computer (pp.  23–32).Google Scholar
  10. Gonzales, R. C., & Woods, E. W. (2001). Digital image processing (2nd ed.). New Jersey: Prentice Hall.Google Scholar
  11. Guan, L., & Kamel, M. (1992). Equal-average hyperplane partitioning method for vector quantization of image data. Pattern Recognition Letters, 13, 693–699.CrossRefGoogle Scholar
  12. Hove, L.-J. (2004). Extending image retrieval systems with a thesaurus for shapes. Master’s thesis, Institute for Information and Media Sciences, University of Bergen.Google Scholar
  13. Jedrzejek C., C. L. (1995). Fast closest codewordsearch algorithm for vector quantization. In Proc. of the IEEE Information Theory Workshop ITW’95.Google Scholar
  14. Jeon, J., Lavrenko, V., & Manmatha, R. (2003). Automatic image annotation and retrieval using cross-media relevance models. In Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 119–126).Google Scholar
  15. Kim, H.-G., Moreau, N., & Sikora, T. (2005). MPEG-7 audio and beyond: Audio content indexing and retrieval. New York: Wiley.Google Scholar
  16. Kimura, A., Kawanish, T., & Kashino, K. (2004). Acceleration of similarity-based partial image retrieval using multistage vector quantization. In Proceedings of the Pattern Recognition, 17th International Conference on (ICPR’04), vol. 2 (pp. 993–996).Google Scholar
  17. Lang, S. (1970). Linear algebra. Reading, MA: Addison-Wesley.zbMATHGoogle Scholar
  18. Lee, C. H., & Chen, L. H. (1994). Fast closeset codewordsearch algorithm for vector quantization. In IEE Proceedings Vision Image and Signal Processing, vol. 141 (pp. 143–148).Google Scholar
  19. Lee, C.-H., & Chen, L.-H. (1995). A fast search algorithm for vector quantization using mean pyramids of codewords. IEEE Transactions on Communications, 43(3–5), 1697–1702.zbMATHGoogle Scholar
  20. Li, J., & Wang, J. (2003a). Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE Transactions on Pattern Analysis and Machine Learning, 25(9), 1075–1088.CrossRefGoogle Scholar
  21. Li, J., & Wang, J. (2003b). Studying digital imagery of ancient paintings by mixtures of stochastic models. IEEE Transactions on Image Processing, 13(3), 340–353.CrossRefGoogle Scholar
  22. Manjunath, B., Salembier, P., & Sikora, T. (2002). Introduction to MPEG-7: Multimedia content description interface. New York: Wiley.Google Scholar
  23. Mirmehdi, M., & Periasamy, R. (2001). CBIR with perceptual region features. In BMVC.Google Scholar
  24. Niblack, W., Barber, R., Equitz, W., Flickner, M., Glasman, E. H., Petkovic, D., et al. (1993). The QBIC project: Querying images by content, using color,texture, and shape. In Storage and Retrieval for Image and Video Databases (SPIE) (pp. 173–187).Google Scholar
  25. Orchard, M. D. (1991). A fast near-neighbour search algorithm. In In Proc. of IEEE ICASSP (pp. 2297–2300).Google Scholar
  26. Quack, T., Mönich, U., Thiele, L., & Manjunath, B. S. (2004). Cortina: A system for large-scale, content-based web image retrieval. In Proceedings of the 12th Annual ACM International Conference on Multimedia (pp. 508–511).Google Scholar
  27. Russell, S. J., & Norvig, P. (2003). Artificial intelligemce: A modern approach (2nd ed.). New Jersey: Prentice-Hall.Google Scholar
  28. Skarbek, W., & Ignasiak, K. (1996). Fast vq codebook search in klt space. Neural Network World, 6(3), 383–386.Google Scholar
  29. Smeulders, A., Worring, M., Santini, S., Gupta, A., & Jain, R. (2000). Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(12), 1349–1380.Google Scholar
  30. Tuncel, E., Ferhatosmanoglu, H., & Rose, K. (2002). Vq-index: an index structure for similarity searching in multimedia databases. In Proceedings of the tenth ACM international conference on Multimedia MULTIMEDIA ’02 (pp. 543–552).Google Scholar
  31. Wang, J., Li, J., & Wiederhold, G. (2001). Simplicity: Semantics-sensitive integrated matching for picture libraries. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(9), 947–963.CrossRefGoogle Scholar
  32. Wang, J. Z., Wiederhold, G., Firschein, O., & Wei, S. X. (1997). Content-based image indexing and searching using daubechies wavelets. International Journal on Digital Libraries, 1(4), 311–328.CrossRefGoogle Scholar
  33. Winston, P. H. (1992). Artificial intelligence (3rd ed.). Reading, MA: Addison-Wesley.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Information Systems and Computer EngineeringIST - Technical University of LisboaLisbonPortugal

Personalised recommendations