Advertisement

Journal of Intelligent Information Systems

, Volume 25, Issue 1, pp 95–121 | Cite as

Fuzzy Cognitive Maps Learning Using Particle Swarm Optimization

  • Elpiniki I. PapageorgiouEmail author
  • Konstantinos E. Parsopoulos
  • Chrysostomos S. Stylios
  • Petros P. Groumpos
  • Michael N. Vrahatis
Article

Abstract

This paper introduces a new learning algorithm for Fuzzy Cognitive Maps, which is based on the application of a swarm intelligence algorithm, namely Particle Swarm Optimization. The proposed approach is applied to detect weight matrices that lead the Fuzzy Cognitive Map to desired steady states, thereby refining the initial weight approximation provided by the experts. This is performed through the minimization of a properly defined objective function. This novel method overcomes some deficiencies of other learning algorithms and, thus, improves the efficiency and robustness of Fuzzy Cognitive Maps. The operation of the new method is illustrated on an industrial process control problem, and the obtained simulation results support the claim that it is robust and efficient.

Keywords

Fuzzy Cognitive Maps Particle Swarm Optimization swarm intelligence soft computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abido, M.A. (2002). Optimal Design of Power System Stabilizers Using Particle Swarm Optimization. IEEE Trans. Energy Conversion, 17(3), 406–413.CrossRefGoogle Scholar
  2. Agrafiotis, D.K. and Cedeno, W. (2002). Feature Selection For Structure—Activity Correlation Using Binary Particle Swarms. Journal of Medicinal Chemistry, 45(5), 1098–1107.CrossRefPubMedGoogle Scholar
  3. Axelrod, R. (1976). Structure of Decision: the Cognitive Maps of Political Elites. Princeton, NJ: Princeton University Press.Google Scholar
  4. Bäck, T. (1996). Evolutionary Algorithms in Theory and Practice. New York: Oxford University Press.Google Scholar
  5. Banzhaf, W., Nordin, P., Keller, R.E., and Francone, F.D. (1998). Genetic Programming—An Introduction. San Francisco: Morgan Kaufman.Google Scholar
  6. Beyer, H.-G. (2001). The Theory of Evolution Strategies. Berlin: Springer.Google Scholar
  7. Bonabeau, E., Dorigo, M., and Théraulaz, G. (1999). From Natural to Artificial Swarm Intelligence. New York: Oxford University Press.Google Scholar
  8. Clerc, M. and Kennedy, J. (2002). The Particle Swarm—Explosion, Stability, and Convergence in a Multidimensional Complex Space. IEEE Trans. Evol. Comput., 6(1), 58–73.CrossRefGoogle Scholar
  9. Cockshott, A.R. and Hartman, B.E. (2001). Improving the Fermentation Medium for Echinocandin B Production Part II: Particle Swarm Optimization. Process Biochemistry, 36, 661–669.CrossRefGoogle Scholar
  10. Cox, E. (1999). The Fuzzy Systems Handbook. Cambridge, MA: Academic Press.Google Scholar
  11. Craiger, P. and Coovert, M.D. (1994). Modelling Dynamic Social and Psychological Processes with Fuzzy Cognitive Maps. In Proc. 3rd IEEE Conf. Fuzzy Systems.Google Scholar
  12. Dickerson, J.A. and Kosko, B. (1994). Adaptive Cognitive Maps in Virtual Worlds. In Annual Meeting World Congress Neural Networks.Google Scholar
  13. Eberhart, R.C. and Shi, Y. (1998). Comparison Between Genetic Algorithms and Particle Swarm Optimization. In V.W. Porto, N. Saravanan, D. Waagen, and A.E. Eiben (Eds.), Evolutionary Programming (pp. 611–616). Vol. VII. Springer.Google Scholar
  14. Eberhart, R.C., Simpson, P., and Dobbins, R. (1996). Computational Intelligence PC Tools. Academic Press.Google Scholar
  15. Fogel, D. (1996). Evolutionary Computation: Towards a New Philosophy of Machine Intelligence. Piscataway, NJ: IEEE Press.Google Scholar
  16. Fourie, P.C. and Groenwold, A.A. (2002). The Particle Swarm Optimization Algorithm in Size and Shape Optimization. Struct. Multidisc. Optim., 23, 259–267.CrossRefGoogle Scholar
  17. Groumpos, P.P. and Stylios, C.D. (2000). Modelling Supervisory Control Systems Using Fuzzy Cognitive Maps. Chaos, Solutions and Fractals, 11, 329–336.Google Scholar
  18. Hagiwara, M. (1992). Extended Fuzzy Cognitive Maps. In Proc. IEEE Int. Conf. Fuzzy Systems (pp. 795–801).Google Scholar
  19. Hebb, D.O. (1949). The Organization of Behaviour: A Neuropsychological Theory. John Wiley.Google Scholar
  20. Jang, J.S., Sun, C.T., and Mizutani, E. (1997). Neuro—Fuzzy and Soft Computing. Upper Saddle River, NJ: Prentice Hall.Google Scholar
  21. Kennedy, J. (1998). The Behavior of Particles. In: V.W. Porto, N. Saravanan, D. Waagen, and A.E. Eiben (Eds.), Evolutionary Programming (pp. 581–590). Vol. VII. Springer.Google Scholar
  22. Kennedy, J. and Eberhart, R.C. (1995). Particle Swarm Optimization. In: Proc. IEEE Int. Conf. Neural Networks (pp. 1942–1948). Vol. IV, Piscataway, NJ. IEEE Service Center.Google Scholar
  23. Kennedy, J. and Eberhart, R.C. (2001). Swarm Intelligence. Morgan Kaufmann Publishers.Google Scholar
  24. Khan, S., Chong, A., and Gedeon, T.A. (1999). Methodology for Developing Adaptive Fuzzy Cognitive Maps for Decision Support. In Proc. 3rd Australia—Japan Evolutionary Systems (pp. 93–100). Canberra.Google Scholar
  25. Kosko, B. (1986). Fuzzy Cognitive Maps. Int. J. Man-Machine Studies, 24, 65–75.Google Scholar
  26. Kosko, B. (1992). Neural Networks and Fuzzy Systems. New Jersey: Prentice Hall.Google Scholar
  27. Kosko, B. (1997). Fuzzy Engineering. New York: Prentice Hall.Google Scholar
  28. Koulouriotis, D.E., Diakoulakis, I.E., Emiris, D.M., 2001. Learning Fuzzy Cognitive Maps Using Evolution Strategies: A Novel Schema For Modeling and Simulating High-Level Behavior. In Proc. 2001 IEEE Cong. Evol. Comp. Seoul, Korea.Google Scholar
  29. Koza, J.R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural Selection. Cambridge, MA: MIT Press.Google Scholar
  30. Laskari, E.C., Parsopoulos, K.E., and Vrahatis, M.N. (2002a). Particle Swarm Optimization for Integer Programming. In Proceedings of the IEEE 2002 Congress on Evolutionary Computation (pp. 1576–1581). Hawaii (HI), USA. IEEE Press.Google Scholar
  31. Laskari, E.C., Parsopoulos, K.E., and Vrahatis, M.N. (2002b). Particle Swarm Optimization for Minimax Problems. In Proceedings of the IEEE 2002 Congress on Evolutionary Computation (pp. 1582–1587). Hawaii (HI), USA. IEEE Press.Google Scholar
  32. Lin, C.T. and Lee, C.S. (1996). Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems. Upper Saddle River, N.J: Prentice Hall.Google Scholar
  33. Lu, W.Z., Fan, H.Y. Leung, A.Y.T., and Wong, J.C.K. (2002). Analysis of Pollutant Levels in Central Hong Kong Applying Neural Network Method With Particle Swarm Optimization. Environmental Monitoring and Assessment, 79, 217–230.CrossRefPubMedGoogle Scholar
  34. Michalewicz, Z. (1994). Genetic Algorithms + Data Structures = Evolution Programs. Berlin: Springer.Google Scholar
  35. Ourique, C.O., Biscaia, E.C., and Carlos Pinto, J. (2002). The Use of Particle Swarm Optimization for Dynamical Analysis in Chemical Processes. Computers and Chemical Engineering, 26, 1783–1793.CrossRefGoogle Scholar
  36. Papageorgiou, E.I. and Groumpos, P.P. (2004). A Weight Adaptation Method for Fine-Tuning Fuzzy Cognitive Map Causal Links. Soft Computing Journal (in press). accepted for publication.Google Scholar
  37. Papageorgiou, E.I., Parsopoulos, K.E., Groumpos, P.P., and Vrahatis, M.N. (2004a). Fuzzy Cognitive Maps Learning Through Swarm Intelligence. Lecture Notes in Computer Science (LNAI), 3070, 344–349.Google Scholar
  38. Papageorgiou, E.I., Spyridonos, P., Ravazoula, P., Stylios, C.D., Groumpos, P.P., and Nikiforidis, G. (2004b). Grading Urinary Bladder Tumors Using Unsupervised Hebbian Algorithm for Fuzzy Cognitive Maps. Biomedical Soft Computing and Human Sciences, 9(2), 33–39.Google Scholar
  39. Papageorgiou, E.I., Spyridonos, P., Stylios, C.D., Nikiforidis, G., and Groumpos, P.P. (2004c). The Challenge of Using Soft Computing Techniques for Tumor Characterization. Lecture Notes in Computer Science (LNAI), 3070, 1031–1036.Google Scholar
  40. Papageorgiou, E.I., Stylios, C.D., and Groumpos, P.P. (2003a). Fuzzy Cognitive Map Learning based on Nonlinear Hebbian Rule. Lecture Notes in Computer Science (LNAI), 2903, 254–266.Google Scholar
  41. Papageorgiou, E.I., Stylios, C.D., and Groumpos, P.P. (2003b). An Integrating Two-Level Hierarchical System for Decision Making in Radiation Therapy Using Fuzzy Cognitive Maps. IEEE Transactions on Biomedical Engineering, 50(12), 1326–1339.CrossRefGoogle Scholar
  42. Papageorgiou, E.I., Stylios, C.D., and Groumpos, P.P. (2004d). Active Hebbian Learning Algorithm to Train FCMs. International Journal of Approximate Reasoning, 37(3), 219–249.CrossRefGoogle Scholar
  43. Parsopoulos, K.E., Laskari, E.C., and Vrahatis, M.N. (2003). Particle Identification by Light Scattering Through Evolutionary Algorithms. In Proceedings of the 1st International Conference for Mathematics and Informatics for Industry (pp. 97–108). Thessaloniki, Greece.Google Scholar
  44. Parsopoulos, K.E., Papageorgiou, E.I., Groumpos, P.P., and Vrahatis, M.N. (2004). Evolutionary Computation Techniques for Optimizing Fuzzy Cognitive Maps in Radiation Therapy Systems. Lecture Notes in Computer Science (LNCS), 3102, 402–413.Google Scholar
  45. Parsopoulos, K.E., Plagianakos, V.P., Magoulas, G.D., and Vrahatis, M.N. (2001). Objective Function “Stretching” to Alleviate Convergence to Local Minima. Nonlinear Analysis, Theory, Methods & Applications, 47(5), 3419–3424.Google Scholar
  46. Parsopoulos, K.E. and Vrahatis, M.N. (2002a). Initializing the Particle Swarm Optimizer Using the Nonlinear Simplex Method. In A. Grmela and N. Mastorakis (Eds.), Advances in Intelligent Systems, Fuzzy Systems, Evolutionary Computation (pp. 216–221). WSEAS Press.Google Scholar
  47. Parsopoulos, K.E. and Vrahatis, M.N. (2002b). Particle Swarm Optimization Method for Constrained Optimization Problems. In P. Sincak, J. Vascak, V. Kvasnicka, and J. Pospichal (Eds.), Intelligent Technologies-Theory and Application: New Trends in Intelligent Technologies (pp. 214–220). Vol. 76 of Frontiers in Artificial Intelligence and Applications. IOS Press.Google Scholar
  48. Parsopoulos, K.E. and Vrahatis, M.N. (2002c). Recent Approaches to Global Optimization Problems Through Particle Swarm Optimization. Natural Computing, 1(2–3), 235–306.CrossRefMathSciNetGoogle Scholar
  49. Parsopoulos, K.E. and Vrahatis, M.N. (2003). Computing Periodic Orbits Of Nondifferentiable/Discontinuous Mappings Through Particle Swarm Optimization. In Proceedings of the IEEE Swarm Intelligence Symposium (pp. 34–41). Indianapolis (IN), USA.Google Scholar
  50. Parsopoulos, K.E. and Vrahatis, M.N. (2004). On the Computation of All Global Minimizers Through Particle Swarm Optimization. IEEE Transactions on Evolutionary Computation, 8(3), 211–224.CrossRefGoogle Scholar
  51. Ray, T. and Liew, K.M. (2002). A Swarm Metaphor for Multiobjective Design Optimization. Engineering Optimization, 34(2), 141–153.CrossRefGoogle Scholar
  52. Rechenberg, I. (1994). Evolution Strategy. In J.M. Zurada, R.J. Marks II, and C. Robinson (Eds.), Computational Intelligence: Imitating Life (pp. 147–159). Piscataway, NJ: IEEE Press.Google Scholar
  53. Saldam, A., Ahmad, I., and Al-Madani, S. (2002). Particle Swarm Optimization for Task Assignment Problem. Microprocessors and Microsystems, 26, 363–371.CrossRefGoogle Scholar
  54. Schwefel, H.-P. (1995). Evolution and Optimum Seeking. New York: Wiley.Google Scholar
  55. Shi, Y. and Eberhart. R.C. (1998a). A Modified Particle Swarm Optimizer. In Proceedings IEEE Conference on Evolutionary Computation (pp. 69–73). Anchorage, AK. IEEE Service Center.Google Scholar
  56. Shi, Y. and Eberhart, R.C. (1998b). Parameter Selection in Particle Swarm Optimization. In V.W. Porto, N. Saravanan, D. Waagen, and A.E. Eiben (Eds.), Evolutionary Programming (pp. 591–600). Vol. VII. Springer.Google Scholar
  57. Stylios, C.D., Georgopoulos, V., and Groumpos, P.P. (1999). Fuzzy Cognitive Map Approach to Process Control Systems. J. Adv. Comp. Intell., 3(5), 409–417.Google Scholar
  58. Stylios, C.D. and Groumpos, P.P. (1998). The Challenge of Modelling Supervisory Systems Using Fuzzy Cognitive Maps. J. Intelligent Manufacturing, 9, 339–345.CrossRefGoogle Scholar
  59. Stylios, C.D. and Groumpos, P.P. (2000). Fuzzy Cognitive Maps in Modeling Supervisory Control Systems. J. Intelligent & Fuzzy Systems, 8(2), 83–98.Google Scholar
  60. Taber, R. (1991). Knowledge Processing With Fuzzy Cognitive Maps. Expert Systems With Applications 2 (pp. 83–87).Google Scholar
  61. Taber, R. (1994). Fuzzy Cognitive Maps Model Social Systems. AI Experts, 9, 8–23.Google Scholar
  62. Tandon, V., El-Mounayri, H., and Kishawy, H. (2002). End Milling Optimization Using Evolutionary Computation. Int. J. Machine Tools & Manufacture, 42, 595–605.Google Scholar
  63. Trelea, I.C. (2003). The Particle Swarm Optimization Algorithm: Convergence Analysis and Parameter Selection. Information Processing Letters, 85, 317–325.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Elpiniki I. Papageorgiou
    • 1
    Email author
  • Konstantinos E. Parsopoulos
    • 2
  • Chrysostomos S. Stylios
    • 3
  • Petros P. Groumpos
    • 4
  • Michael N. Vrahatis
    • 5
  1. 1.Department of Electrical and Computer EngineeringUniversity of Patras Artificial Intelligence Research Center (UPAIRC), University of PatrasPatrasGreece
  2. 2.Computational Intelligence Laboratory (CI Lab), Department of MathematicsUniversity of Patras Artificial Intelligence Research Center (UPAIRC), University of PatrasPatrasGreece
  3. 3.Department of Communications, Informatics and Management, TEI of EpirusArtificial Intelligence Research Center (UPAIRC), University of PatrasArtasGreece
  4. 4.Department of Electrical and Computer EngineeringUniversity of Patras Artificial Intelligence Research Center (UPAIRC), University of PatrasPatrasGreece
  5. 5.Computational Intelligence Laboratory (CI Lab), Department of MathematicsUniversity of Patras Artificial Intelligence Research Center (UPAIRC), University of PatrasPatrasGreece

Personalised recommendations