Skip to main content

Advertisement

Log in

Habitat loss of a rainforest specialist pollinator fly as an indicator of conservation status of the South American Temperate Rainforests

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

We estimate habitat loss and fragmentation in a hoverfly, Aneriophora aureorufa, used as a representative forest specialist species. This species is a pollinator specialist of two native trees, forming a triad endemic to the South American Temperate Rainforest (SATR). We combine species distribution models with species-specific requirements to estimate the habitat range of A. aureorufa over two non-overlapping time periods (before human settlement to 2000, and from 2000 to 2014). We analyzed the predicted distribution range of A. aureorufa in Chile, quantifying habitat loss in both periods and fragmentation in the latter. In addition, we evaluated the representativeness of the Chilean protected areas system in relation to the current habitat of the species. We found that the total habitat of A. aureorufa decreased by 68.3% compared to historic pre-settlement levels; in the period 2000–2014 the loss was 4.9%. The northern zone was the most affected by habitat loss and fragmentation, with an estimated total loss of 89.9% from the historic period to 2014, with the loss of 238.2 km2 per year between 2000 and 2014. Eighteen percent of the habitat of A. aureorufa occurs within protected areas. We found an overrepresentation in the southern zone (24.79%) and an underrepresentation in the northern zone (3.44%). We propose that forest specialist species of the northern zone of the SATR could be threatened due to the high pressure of habitat loss and the underrepresentation of the Chilean protected areas systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alaniz AJ, Galleguillos M, Pérez-Quezada JF (2016) Assessment of quality of input data used to classify ecosystems according to the IUCN Red List methodology: the case of the central Chile hotspot. Biol Conserv 204:378–385

    Article  Google Scholar 

  • Albrecht M, Schmid B, Hautier Y, Mueller CB, Müller CB (2012) Diverse pollinator communities enhance plant reproductive success. Proc R Soc B Biol Sci 279:4845–4852

    Article  Google Scholar 

  • Armesto J, Rozzi R, Smith-Ramírez C, Arroyo MTK (1998) Conservation targets in Southern temperate forest. Science 282:1271–1272

    Article  Google Scholar 

  • Armesto JJ, Willson MF, Díaz I, Reid S (2005) Ecología del paisaje rural de la isla de Chiloe: Diversidad de especies de aves en fragmentos de bosques nativos. In: Smith-Ramírez C, Armesto JJ, ValdovinosHistoria C (eds) Biodiversidad y Ecología de los Bosques Costeros de Chile. Editorial Universitaria, Santiago, pp. 585–599

    Google Scholar 

  • Bradley C (1985) The absolute correlation coefficient. Math Gazette 69(447):12–17

    Article  Google Scholar 

  • Branquart E, Hemptinne JL (2000) Selectivity in the exploitation of floral resources by hoverflies (Diptera: Syrphinae). Ecography 23(6):732–742

    Article  Google Scholar 

  • Brown JL (2014) SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol Evol 5:694–700

    Article  Google Scholar 

  • Carvajal MA, Alaniz AJ, Smith-Ramírez C, Sieving KE (2018) Assessing habitat loss and fragmentation and their effects on population viability of forest specialist birds: linking biogeographical and population approaches. Divers Distrib 00:1–11. https://doi.org/10.1111/ddi.12730

    Article  Google Scholar 

  • CONAF (2014) Catastro de incendios forestales entre 1985 y 2013. Dirección de Manejo del Fuego. Santiago de Chile

  • Conaf BIRF, Universidad Austral de Chile, Pontificia Universidad Católica de Chile, % Universidad Católica de Temuco (1999) Catastro y evaluación de los recursos vegetacionales nativos de Chile. Informe nacional con variables ambientales. Santiago, Chile

  • Crockatt ME, Bebber DP (2015) Edge effects on moisture reduce wood decomposition rate in a temperate forest. Glob Change Biol 21:698–707

    Article  Google Scholar 

  • Di Castri F, Hajek ER (1976) Bioclimatología de Chile. Editorial Universidad Católica de Chile, Santiago, pp 128

    Google Scholar 

  • Donoso C (2006) Especies arbóreas de los bosques templados de Chile y Argentina: autoecología. Marisa Cúneo Ediciones, Valdivia

    Google Scholar 

  • Echeverria C, Coomes DA, Hall M, Newton AC (2008) Spatially explicit models to analyze forest loss and fragmentation between 1976 and 2020 in Southern Chile. Ecol Model 2:439–449. https://doi.org/10.1016/j.ecolmodel.2007.10.045

    Article  Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57

    Article  Google Scholar 

  • Fahrig L (2017) Ecological responses to habitat fragmentation per se. Annu Rev Ecol Evol Syst 48:1–23

    Article  Google Scholar 

  • González CR, Coscarón S (2005) Diversidad de dípteros en la cordillera de la costa de Chile. In: Smith-Ramírez C, Armesto JJ, Valdovinos C (eds). Historia, biodiversidad y ecología de los bosques costeros de Chile. Editorial Universitaria, Santiago, pp 330–349

    Google Scholar 

  • Grez AA, Simonetti JA, Bustamante RO (2006) Biodiversidad en ambientes fragmentados de Chile: patrones y procesos a diferentes escalas. Editorial Universitaria, Santiago

    Google Scholar 

  • Haddad NM, Brudvig L, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King J, Laurance WF, Levey DJ, Margules CR, Melbourne B, Nicholls AO, Orrock JL, Song DX, Townshend JR (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:1–9

    Article  Google Scholar 

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853

    Article  CAS  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • Huey RB, Kearney MR, Krockenberger A, Holtum JA, Jess M, Williams SE (2012) Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos Trans R Soc B 367(1596):1665–1679

    Article  Google Scholar 

  • Klein AM, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc Biol Sci 274:66, 95–96, 191

    Article  Google Scholar 

  • Lander TA, Harris SA, Boshier DH (2009) Flower and fruit production and insect pollination of the endangered Chilean tree, Gomortega keule in native forest, exotic pine plantation and agricultural environments. Rev Chil Hist Nat 82:403–412

    Article  Google Scholar 

  • Lander TA, Boshier DH, Harris SA (2010) Fragmented but not isolated: contribution of single trees, small patches and long-distance pollen flow to genetic connectivity for Gomortega keule, an endangered Chilean tree. Biol Conserv 143:2583–2590

    Article  Google Scholar 

  • Lara A, Solari ME, Prieto MDR, Peña MP (2012) Reconstrucción de la cobertura de la vegetación y uso del suelo hacia 1550 y sus cambios a 2007 en la ecorregión de los bosques valdivianos lluviosos de Chile (35°–43° 30′ S). Bosque 33:13–23

    Article  Google Scholar 

  • López-Barrera F, Armesto JJ, Williams-Linera G, Smith-Ramírez C, Manson RH (2007) Fragmentation and edge effects on plant–animal interactions, ecological processes and biodiversity. In: Newton A (ed) Biodiversity loss and conservation in fragmented forest landscapes: evidence from Mexican montane forests and the temperate rainforests of South America. CABI Publishing, Wallingford

    Google Scholar 

  • Luebert F, Pliscoff P (2006) Sinopsis bioclimática y vegetacional de Chile. Editorial Universitaria, Santiago

    Google Scholar 

  • Marshall SA (2012) Flies: the natural history and diversity of Diptera. Firefly Book Ltda, New York

    Google Scholar 

  • McGarigal K, Marks BJ, Holms C, Ene E (1994) FRAGSTATS: spatial analysis program for quantifying landscape structure. Version 2.0. Forest Science Department, Oregon State University, Corvallis

    Google Scholar 

  • Miranda A, Altamirano A, Cayuela L, Lara A, González M (2017) Native forest loss in the Chilean biodiversity hotspot: revealing the evidence. Reg Environ Change 17:285–297

    Article  Google Scholar 

  • Mittermeier RA, Robles Gil P, Hoffman M, Pilgrim J, Brooks T, Mittermeier CG, Lamoreux J, da Fonseca GA (2004) Hotspots revisited: earth’s biologically richest and most endangered terrestrial ecoregions. Conservation international, CEMEX books of nature series, Mexico, p 392

    Google Scholar 

  • Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120(3):321–326

    Article  Google Scholar 

  • Orford KA, Vaughan IP, Memmott J (2015) The forgotten flies: the importance of non-syrphid Diptera as pollinators. Proc R Soc B Biol Sci 282:20142934

    Article  Google Scholar 

  • Pereira HM, Leadley PW, Proença V, Alkemade R, Scharlemann JPW, Fernandez-Manjarrés JF, Araújo MB, Balvanera P, Biggs R, Cheung WWL, Chini L, Cooper HD, Gilman EL, Guénette S, Hurtt GC, Huntington HP, Mace GM, Oberdorff T, Revenga C, Rodrigues P, Scholes RJ, Sumaila UR, Walpole M (2010) Scenarios for global biodiversity in the 21st century. Science 330:1496–1501

    Article  CAS  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire SP (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  • Pliscoff P, Fuentes-Castillo T (2011) Representativeness of terrestrial ecosystems in Chile’s protected area system. Environ Conserv 38:303–311

    Article  Google Scholar 

  • Pliscoff P, Luebert F, Hilger HH, Guisan A (2014) Effects of alternative sets of climatic predictors on species distribution models and associated estimates of extinction risk: a test with plants in an arid environment. Ecol Model 288:166–177

    Article  Google Scholar 

  • Polidori C, Nieves-Aldrey JL, Gilbert F, Rotheray GE (2014) Hidden in taxonomy: Batesian mimicry by a syrphid fly towards a Patagonian bumblebee. Insect Conserv Divers 7:32–40

    Article  Google Scholar 

  • Quintero C, Morales CL, Aizen MA (2009) Effects of anthropogenic habitat disturbance on local pollinator diversity and species turnover across a precipitation gradient. Biodivers Conserv 19:257–274

    Article  Google Scholar 

  • Ramos-Jiliberto R, Albornoz AA, Arim M, Smith-Ramírez C, Valdovinos FS, Armesto J (2009) A network analysis of plant-pollinator interactions in southern rain forests of Chiloé Island, Chile. Oecologia 160:697–706

    Article  Google Scholar 

  • Rotheray GE, MacGowan I (2000) Status and breeding sites of three presumed endangered Scottish saproxylic syrphids (Diptera, Syrphidae). J Insect Conserv 4:215–223

    Article  Google Scholar 

  • Rotheray GE, Hancock G, Hewitt S, Horsfield D, MacGowan I, Robertson D, Watt K (2001) The biodiversity and conservation of saproxylic Diptera in Scotland. J Insect Conserv 5:77–85

    Article  Google Scholar 

  • Royston P (1982) An extension of Shapiro and Wilks’s W test for normality to large samples. J Appl Stat 31:115–124

    Article  Google Scholar 

  • Royston P (1983) A simple method for evaluating the Shapiro–Francia W’ test of non-normality. Statistician 32:297–300

    Article  Google Scholar 

  • Segovia RA, Hinojosa LF, Pérez MF, Hawkins BA (2013) Biogeographic anomalies in the species richness of Chilean forests: Incorporating evolution into a climatic—historic scenario. Aust Ecol 38:905–914

    Article  Google Scholar 

  • Shannon RC (1926) Review of the American xylotine syrphid–flies. Proc USA Natl Mus 69(9):1–52

    Google Scholar 

  • Sierralta L, Serrano R, Rovira J, Cortés C (2011) Las áreas protegidas de Chile. Ministerio del Medio Ambiente, Santago

    Google Scholar 

  • Smith-Ramírez C (2004) The Chilean coastal range: a vanishing center of biodiversity and endemism in southern temperate rain forests. Biodivers Conserv 13:373–393

    Article  Google Scholar 

  • Smith-Ramírez C, Armesto JJ (1994) Flowering and fruiting patterns in the temperate rain forest of Chiloé: ecologies and climatic constraints. J Ecol 82:353–365

    Article  Google Scholar 

  • Smith-Ramírez C, Armesto J, Saavedra B (2005a) Conclusiones. In: Smith-Ramírez C, Armesto J, Valdovinos C (eds) Historia, biodiversidad y ecología de los bosques costeros de Chile. Editorial Universitaria, Santiago

    Google Scholar 

  • Smith-Ramírez C, Martinez P, Nuñez M, González C, Armesto, JJ (2005b) Diversity, flower visitation frequency and generalism of pollinators in temperate rain forests of Chiloé Island, Chile. Bot J Linn Soc 147:399–416

    Article  Google Scholar 

  • Smith-Ramírez C, Rovere AE, Núñez-Ávila MC, Armesto JJ (2007) Habitat fragmentation and reproductive ecology of Embothrium coccineum, Eucryphia cordifolia and Aextoxicon punctatum in southern temperate rainforest. In: Newton AC (ed) Biodiversity loss and conservation in fragmented forest landscapes: the forests of montane Mexico and temperate South America, CABI Publishing, Wallingford, pp 102–119.

    Chapter  Google Scholar 

  • Smith-Ramírez C, Ramos-Jiliberto R, Valdovinos FS, Martínez P, Castillo JA, Armesto JJ (2014) Decadal trends in the pollinator assemblage of Eucryphia cordifolia in Chilean rainforests. Oecologia 176:157–169

    Article  Google Scholar 

  • Smith-Ramírez C, Martínez P, Díaz I, Armesto JJ (2016) Upper canopy pollinators of Eucryphia cordifolia, a tree of South American temperate rain forest. J Insect Biodivers 4(9):1–7

    Article  Google Scholar 

  • Ssymank A, Kearns CA, Pape T, Thompson C (2008) Pollinating flies (Diptera): a major contribution to plant diversity and agricultural production. Biodiversity 9:86–89

    Article  Google Scholar 

  • Tan KH, Nishida R, Toong YC (2002) Increased information leakage from text. J Chem Ecol 28:1161–1172

    Article  CAS  Google Scholar 

  • Thompson FC (1999) A key to the genera of the flower flies (Diptera: Syrphidae) of the Neotropical Region including descriptions of new genera and new species and a glossary of taxonomic terms. Contrib Entomol Int 3:322–378

    Google Scholar 

  • Thompson FC, Rotheray GE, Zumbado MA (2010) Syrphidae (flower flies). In: Brown BV, Borkent A, Cumming JM, Wood DM, Woodley NE, Zumbado MA (eds) Manual of central American Diptera, vol 2. NRC Research Press, Ottawa, pp 763–792

    Google Scholar 

  • Tuff KT, Tuff T, Davies KF (2016) A framework for integrating thermal biology into fragmentation research. Ecol Lett 19:361–374

    Article  CAS  Google Scholar 

  • UN (United Nations) (2010) United Nations convention on biological diversity, strategic plan for biodiversity 2011–2020, including Aichi biodiversity targets. Secretariat of the convention on biological diversity, Montreal. http://www.cbd.int/sp

  • van Proosdij ASJ, Sosef MSM, Wieringa JJ, Raes N (2016) Minimum required number of specimen records to develop accurate species distribution models. Ecography 39:542–552. https://doi.org/10.1111/ecog.01509

    Article  Google Scholar 

  • Vanbergen AJ, Initiative the IP (2013) Threats to an ecosystem service: pressures on pollinators. Front Ecol Environ 11:251–259

    Article  Google Scholar 

  • Villagran C, Hinojosa LF (1997) Historia de los bosques del sur de Sudamérica, II: Análisis fitogeográfico. Rev Chil Hist Nat 70:241–267

    Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of earth ecosystems. Science 278:21

    CAS  Google Scholar 

  • Wratten SD, Bowie MH, Hickman JM et al (2003) Field boundaries as barriers to movement of hover flies (Diptera: Syrphidae) in cultivated land. Oecologia 134:605–611. https://doi.org/10.1007/s00442-002-1128-9

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank numerous assistants who collaborated with us in recording field data. The English of the manuscript was edited by Susan Angus. C.S.R thanks to Grants PFB-23 (CONICYT, Chile) and Millennium Scientific initiative, grant P05-002, both from the Instituto de Ecología y Biodiversidad (IEB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto J. Alaniz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2668 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alaniz, A.J., Carvajal, M.A., Smith-Ramírez, C. et al. Habitat loss of a rainforest specialist pollinator fly as an indicator of conservation status of the South American Temperate Rainforests. J Insect Conserv 22, 745–755 (2018). https://doi.org/10.1007/s10841-018-0098-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-018-0098-0

Keywords

Navigation