Journal of Insect Conservation

, Volume 20, Issue 4, pp 723–736 | Cite as

Diversity distribution of saproxylic beetles in Chilean Mediterranean forests: influence of spatiotemporal heterogeneity and perturbation

  • Alejandra García-López
  • Ana Paola Martínez-Falcón
  • Estefanía Micó
  • Patricia Estrada
  • Audrey A. Grez


Mediterranean ecosystems have been recognized as a priority for biodiversity conservation due to their high levels of species richness and endemism. In South America, these environments are restricted to central Chile and represent a biodiversity hotspot. The study of saproxylic beetles in this area is an unexplored topic, despite the ecological role they play in these ecosystems and their potential usefulness for monitoring the degree of forest conservation. We investigated the diversity distribution of trophic guilds of saproxylic beetles in Chilean Mediterranean forests, to identify the main environmental variables that influence their distribution. We also analyzed seasonal dynamics as a key factor influencing insect communities and the effect of human disturbance on their diversity and composition. We identified characteristic species of perturbation degree as bioindicators for habitat monitoring. A total of 40 window traps were used to survey three Mediterranean forest types in the Río Clarillo National Reserve and the adjacent non-protected areas. We found that the diversity, abundance and composition of saproxylic beetles varied significantly spatiotemporally among the studied forest types and among perturbation degrees, showing different patterns depending on the trophic guild. Results indicated that conservation decisions should include the preservation of a larger range of different vegetation types and the nearby zones that have suffered low levels of disturbance or fragmentation and where actions promoting the presence of old native trees would have a significant conservation value.


Diversity turnover Indicator species Saproxylic trophic guilds True diversity Río Clarillo 



Financial support was given by the research Project FONDECYT 3140322 (Fondo Nacional de Ciencia y Tecnología) of the Chilean Government. We thank J. Solervicens and M. Elgueta for their help with species identification and guild assignment. We are also grateful to the Río Clarillo National Reserve Administration for their continued assistance in the field work; A. González and E. Gazzano for their support during the traps installation and the environmental data collection; L. Ulloa for sharing his experienced vision of the Reserve and for helping in the collection of the specimens; I. Mellado Huenulef for his help in sample processing.

Supplementary material

10841_2016_9905_MOESM1_ESM.pdf (281 kb)
Supplementary material 1 (PDF 280 KB)
10841_2016_9905_MOESM2_ESM.pdf (285 kb)
Supplementary material 2 (PDF 284 KB)


  1. Alencar J, de Mello CF, AÉ G, Gil-Santana HR, dos Santos SJ, Santos-Mallet JR, Gleiser RM (2015) Culicidae community composition and temporal dynamics in Guapiaçu Ecological Reserve, Cachoeiras de Macacu, Rio de Janeiro, Brazil. PLoS One 10:e0122268CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alinvi O, Ball JP, Danell K, Hjältén J, Pettersson RB (2007) Sampling saproxylic beetle assemblages in dead wood logs: comparing window and eclector traps to traditional bark sieving and a refinement. J Insect Conserv 11:99–112. doi: 10.1007/s10841-006-9012-2 CrossRefGoogle Scholar
  3. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. doi: 10.1111/j.1442-9993.2001.01070.pp.x Google Scholar
  4. Anderson MJ, Walsh DCI (2013) What null hypothesis are you testing? PERMANOVA, ANOSIM and the Mantel test in the face of heterogeneous dispersions. Ecol Monogr 83:557–574Google Scholar
  5. Arias ET, Richardson BJ, Elgueta M (2008) The canopy beetle faunas of Gondwanan element trees in Chilean temperate rain forests. J Biogeogr 35:914–925CrossRefGoogle Scholar
  6. Armesto JJ, Arroyo MTK, Hinojosa LF (2007) The Mediterranean environment. In: Veblen TT, Young KR, Orme AR (eds) The physical geography of South America, Oxford University Press, Oxford pp 184–199Google Scholar
  7. Arroyo MTK, Cavieres L (1997) The Mediterranean-type climate flora of central Chile—what do we know and how can we assure its protection? Noticiero de Biología 5:48–56Google Scholar
  8. Arroyo MTK, Cavieres L, Marticorena C, Muñoz-Schick M (1995) Convergence in the Mediterranean floras in central Chile and California: insights from comparative biogeography. In: Arroyo MTK, Zedler PH, Fox MD (eds) Ecology and biogeography of Mediterranean ecosystems in Chile, California, and Australia. Springer, New York, pp 43–88CrossRefGoogle Scholar
  9. Arroyo MTK, Rozzi R, Simonetti JA, Salaberry M (1999) Central Chile. In: Mittermeier RA, Myers N, Mittermeier CG (eds) Hotspots: earth’s biologically richest and most endangered terrestrial ecoregions. CEMEX, Mexico, pp 161–171Google Scholar
  10. Barbalat S (1995) Efficacité comparée de quelques méthodes de piégeage sur certains coléoptères et influence de l’anthophilie sur le résultat des captures. Bull Soc Sci Nat 118:39–52Google Scholar
  11. Benítez-Malvido J, Dáttilo W, Martínez-Falcón AP, Durán-Barrón C, Valenzuela J, López S, Lombera R (2016) The multiple impacts of tropical forest fragmentation on arthropod biodiversity and on their patterns of interactions with host plants. PLoS One 11(:):e0146461CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bouget C (2005) Short-term effect of windstorm disturbance on saproxylic beetles in broadleaved temperate forests: part II. Effects of gap size and gap isolation. Forest Ecol Manag 216:15–27CrossRefGoogle Scholar
  13. Bouget C, Brustel H (2009) Saproxylic Coleoptera. In: Bouget C, Nageleisen LM (eds) Forest insect studies: methods and techniques. key consideration for standardisation. Les dossiers forestiers, Vol 19, Office National des Forêts, Paris, pp 100–105Google Scholar
  14. Bouget C, Brustel H, Nageleisen LM (2005) Nomenclature des groupes écologiques d’insectes liés au bois: synthèse et mise au point sémantique. Proc Natl Acad Sci USA 328:936–948Google Scholar
  15. Bouget C, Brustel H, Brin A, Noblecourt T (2008) Sampling saproxylic beetles with window flight traps: methodological insights. Rev Ecolog 63:13–24Google Scholar
  16. Buse J, Levanony T, Timm A, Dayan T, Assmann T (2010) Saproxylic beetle assemblages in the Mediterranean region: impact of forest management on richness and structure. Forest Ecol Manag 259:1376–1384. doi: 10.1016/j.foreco.2010.01.004 CrossRefGoogle Scholar
  17. Carbó-Ramírez P, Zuria I (2011) The value of small urban greenspaces for birds in a Mexican city. Landsc Urban Plan 100:213–222Google Scholar
  18. Carmona MR, Armesto JJ, Aravena JC, Pérez CA (2002) Coarse woody debris biomass in successional and primary temperate forests in Chiloé Island, Chile. Forest Ecol Manag 164:265–275. doi: 10.1016/S0378-1127(01)00602-8 CrossRefGoogle Scholar
  19. Chao A, Jost L (2012) Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93:2533–2547. doi: 10.1890/11-1952.1 CrossRefPubMedGoogle Scholar
  20. Chao A, Jost L (2015) Estimating diversity and entropy profiles via discovery rates of new species. Methods Ecol Evol 6:873–882CrossRefGoogle Scholar
  21. Chao A, Shen T-J (2003) Nonparametric estimation of Shannon’s index of diversity when there are unseen species in sample. Environ Ecol Stat 10:429–443. doi: 10.1023/a:1026096204727 CrossRefGoogle Scholar
  22. Chao A, Shen T (2010) Program SPADE (Species Prediction and Diversity Estimation). Program and User’s Guide published at
  23. Chiari S, Marini L, Audisio P, Ranius T (2012) Habitat of an endangered saproxylic beetle, Osmoderma eremita, in Mediterranean woodlands. Ecoscience 19:299–307. doi: 10.2980/19-4-3505 CrossRefGoogle Scholar
  24. Clarke KR, Gorley RN (2009) Primer, version 6.1.10: user manual and tutorial. Primer-E, PlymouthGoogle Scholar
  25. CONAF, Corporación Nacional Forestal (1996) Plan de manejo Reserva Nacional Río Clarillo. Documento de Trabajo No. 247, Unidad de gestión Patrimonio Silvestre, Corporación Nacional Forestal, Región Metropolitana, SantiagoGoogle Scholar
  26. Cowling R, Rundel P, Lamont B, Arroyo M, Arianoutsou M (1996) Plant diversity in Mediterranean climate regions. Trends Ecol Evol 11:362–366CrossRefPubMedGoogle Scholar
  27. Crawley M (2007) The R Book. Wiley, West SussexCrossRefGoogle Scholar
  28. Dajoz R (1998) Les insectes et la forêt: rôle et diversité des insectes dans le milieu forestier. Lavoisier, ParisGoogle Scholar
  29. Dajoz R (2000) Insects and forests: the role and diversity of insects in the forest environment. Intercept, AndoverGoogle Scholar
  30. De CáCeres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90:3566–3574CrossRefPubMedGoogle Scholar
  31. De CáCeres M, Legendre P, Moretti M (2010) Improving indicator species analysis by combining groups of sites. Oikos 119:1674–1684CrossRefGoogle Scholar
  32. De CáCeres M, Legendre P, Wiser SK, Brotons L (2012) Using species combinations in indicator value analyses. Methods Ecol Evol 3:973–982CrossRefGoogle Scholar
  33. Donoso C, Lara A (1995) Utilización de los bosques nativos en Chile: pasado, presente y futuro. In: Armesto JJ, Villagrán C, Arroyo MTK (eds) Ecología de los bosques nativos de Chile. Editorial Universitaria, Universidad de Chile, Santiago, pp 23–28Google Scholar
  34. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366Google Scholar
  35. Elgueta M, Arriagada G (1989) Estado actual del conocimiento de los coleópteros de Chile (Insecta: Coleoptera). Rev Chil Entomol 17:5–60Google Scholar
  36. Estrada P, Solervicens J (2004) Temporal fluctuations of soil surface insects of sclerophyllous vegetation of Rio Clarillo National Reserve Metropolitan Region, Chile. Acta entomologica chilena. El Instituto, Santiago 281:7–21Google Scholar
  37. Franc N, Götmark F, Økland B, Nordén B, Paltto H (2007) Factors and scales potentially important for saproxylic beetles in temperate mixed oak forest. Biol Conserv 135:86–98CrossRefGoogle Scholar
  38. Gajardo R (1994) La vegetación natural de Chile: clasificación y distribución geográfica. Editorial Universitaria, SantiagoGoogle Scholar
  39. Gaylord ML, Kolb TE, Wallin KF, Wagner MR (2006) Seasonality and lure preference of bark beetles (curculionidae: scolytinae) and associates in a northern Arizona ponderosa pine forest. Environ Entomol 35:37–47CrossRefGoogle Scholar
  40. Goßner M, Engel K, Jessel B (2008) Plant and arthropod communities in young oak stands: are they determined by site history? Biodivers Conserv 17:3165–3180. doi: 10.1007/s10531-008-9418-0 CrossRefGoogle Scholar
  41. Grove SJ (2000) Trunk window trapping: an effective technique for sampling tropical saproxylic beetles. Mem Qld Mus 46:149–160Google Scholar
  42. Grove SJ (2002) Saproxylic insect ecology and the sustainable management of forests. Annu Rev Ecol Syst 33:1–23. doi: 10.1146/annurev.ecolsys.33.010802.150507 CrossRefGoogle Scholar
  43. Heywood H (1993) Mediterranean floras and their significant in relation to world biodiversity. Dissertation. Parc Naturel Régional de la Corse and Conservatoire Botanique National de Porquerolles, FranceGoogle Scholar
  44. Horak J, Vodka S, Kout J, Halda JP, Bogusch P, Pech P (2014) Biodiversity of most dead wood-dependent organisms in thermophilic temperate oak woodlands thrives on diversity of open landscape structures. Forest Ecol Manag 315:80–85. doi: 10.1016/j.foreco.2013.12.018 CrossRefGoogle Scholar
  45. Hsieh YL, Linsenmair KE (2012) Seasonal dynamics of arboreal spider diversity in a temperate forest. Ecol Evol 2:768–777CrossRefPubMedPubMedCentralGoogle Scholar
  46. Hyvärinen E, Kouki J, Martikainen P (2006) A comparison of three trapping methods used to survey forest dwelling Coleoptera. Eur J Entomol 103:397–407CrossRefGoogle Scholar
  47. Jonsell M (2011) Old park trees as habitat for saproxylic beetle species. Biodivers Conserv 21:619–642. doi: 10.1007/s10531-011-0203-0 CrossRefGoogle Scholar
  48. Jost L (2006) Entropy and diversity. Oikos 113:363–374CrossRefGoogle Scholar
  49. Jost L (2010) Independence of alpha and beta diversities. Ecology 91:1969–1974CrossRefPubMedGoogle Scholar
  50. Kleinbaum DG, Kupper LL, Muller KE (1998) Applied regression analysis and other multivariable methods. Duxbury Press, New YorkGoogle Scholar
  51. Koch Widerberg M, Ranius T, Drobyshev I, Nilsson U, Lindbladh M (2012) Increased openness around retained oaks increases species richness of saproxylic beetles. Biodivers Conserv 21:3035–3059. doi: 10.1007/s10531-012-0353-8 CrossRefGoogle Scholar
  52. Lachat T, Wermelinger B, Gossner MM, Bussler H, Isacsson G, Müller J (2012) Saproxylic beetles as indicator species for dead-wood amount and temperature in European beech forests. Ecol Indic 23:323–331. doi: 10.1016/j.ecolind.2012.04.013 CrossRefGoogle Scholar
  53. Lindhe A, Lindelöw Å, Åsenblad N (2005) Saproxylic beetles in standing dead wood density in relation to substrate sun-exposure and diameter. Biodiv Conserv 14:3033–3053Google Scholar
  54. Magurran A (1988) Ecological diversity and its measurement. Princeton University Press, PrincetonCrossRefGoogle Scholar
  55. Martikainen P, Siitonen J, Punttila P, Kaila L, Rauh J (2000) Species richness of Coleoptera in mature managed and old-growth boreal forests in southern Finland. Biol Conserv 94:199–209CrossRefGoogle Scholar
  56. McGeoch MA, Van Rensburg BJ, Botes A (2002) The verification and application of bioindicators: a case study of dung beetles in a savanna ecosystem. J Appl Ecol 39:661–672CrossRefGoogle Scholar
  57. Micó E, Marcos-García MA, Quinto J, Ramírez A, Rios S, Padilla A, Galante E (2010) Los árboles añosos de las dehesas ibéricas, un importante reservorio de insectos saproxílicos amenazados. Elytron 24:89–97Google Scholar
  58. Micó E, Juárez M, Sánchez A, Galante E (2011) Action of the saproxylic scarab larva Cetonia aurataeformis (Coleoptera: Scarabaeoidea: Cetoniidae) on woody substrates. J Nat Hist 45:2527–2542. doi: 10.1080/00222933.2011.596953 CrossRefGoogle Scholar
  59. Micó E, García-López A, Brustel H, Padilla A, Galante E (2013) Explaining the saproxylic beetle diversity of a protected Mediterranean area. Biodivers Conserv 22:889–904. doi: 10.1007/s10531-013-0456-x CrossRefGoogle Scholar
  60. Micó E, García-López A, Sánchez A, Juárez M, Galante E (2015) What can physical, biotic and chemical features of a tree hollow tell us about their associated diversity? J Insect Conserv 19:141–153. doi: 10.1007/s10841-015-9754-9 CrossRefGoogle Scholar
  61. Moreno CE, Barragán F, Pineda E, Pavón NP (2011) Reanálisis de la diversidad alfa: alternativas para interpretar y comparar información sobre comunidades ecológicas. Rev Mex Biodivers 82:1249–1261Google Scholar
  62. Müller J, Goßner MM (2010) Three-dimensional partitioning of diversity informs state-wide strategies for the conservation of saproxylic beetles. Biol Conserv 143:625–633. doi: 10.1016/j.biocon.2009.11.027 CrossRefGoogle Scholar
  63. Müller J, Bussler H, Kneib T (2008) Saproxylic beetle assemblages related to silvicultural management intensity and stand structures in a beech forest in Southern Germany. Eur J Insect Conserv 12:107–124CrossRefGoogle Scholar
  64. Müller J, Noss RF, Bussler H, Brandl R (2010) Learning from a “benign neglect strategy” in a national park: response of saproxylic beetles to dead wood accumulation. Biol Conserv 143:2559–2569. doi: 10.1016/j.biocon.2010.06.024 CrossRefGoogle Scholar
  65. Müller J, Brunet J, Brin A, Bouget C, Brustel H, Bussler H, Förster B, Isacsson G, KöHler F, Lachat T, Gossner MM (2013) Implications from large-scale spatial diversity patterns of saproxylic beetles for the conservation of European Beech forests. Insect Conserv Divers 6:162–169. doi: 10.1111/j.1752-4598.2012.00200.x CrossRefGoogle Scholar
  66. Myers N (1990) The biodiversity challenge: expanded hot-spots analysis. Environmentalist 10:243–256CrossRefPubMedGoogle Scholar
  67. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefPubMedGoogle Scholar
  68. Naveh Z, Dan J (1973) The human degradation of Mediterranean landscape in Israel. In: Di Castri F, Monney H (eds) Mediterranean type ecosystems. Springer, Berlin, pp 373–390CrossRefGoogle Scholar
  69. Niemeyer HM, Bustamante RO, Simonetti JA, Teillier S, Fuentes-Contreras E, Mella JE (2002) Historia natural de la reserva nacional Río Clarillo: un espacio para aprender ecología. Impresos Socías, SantiagoGoogle Scholar
  70. Okland B (1996) A comparison of three methods of trapping saproxylic beetles. Eur J Entomol 93:195–209Google Scholar
  71. Pliscoff P, Fuentes-Castillo T (2011) Representativeness of terrestrial ecosystems in Chile’s protected area system. Environ Conserv 38:303–311. doi: 10.1017/S0376892911000208 CrossRefGoogle Scholar
  72. Qian H (2009) Global comparisons of beta diversity among mammals, birds, reptiles, and amphibians across spatial scales and taxonomic ranks. J Syst Evol 47:509–514. doi: 10.1111/j.1759-6831.2009.00043.x CrossRefGoogle Scholar
  73. Quézel P (2004) Large-scale post-glacial distribution of vegetation structures in the Mediterranean region. In: Mazzoleni S, di Pasquale G, Mulligan M, di Martino P, Rego F. (eds) Recent dynamics of the Mediterranean vegetation and landscape. Wiley, Chichester, pp 3–12Google Scholar
  74. Quinto J, Marcos-García MA, Brustel H, Galante E, Micó E (2013) Effectiveness of three sampling methods to survey saproxylic beetle assemblages in Mediterranean woodland. J Insect Conserv 17:765–776. doi: 10.1007/s10841-013-9559-7 CrossRefGoogle Scholar
  75. Quinto J, Micó E, Martínez-Falcón A, Galante E, Marcos-García MA (2014) Influence of tree hollow characteristics on the diversity of saproxylic insect guilds in Iberian Mediterranean woodlands. J Insect Conserv 18:981–992. doi: 10.1007/s10841-014-9705-x CrossRefGoogle Scholar
  76. Quinto J, Marcos-García MA, Díaz-Castelazo C, Rico-Gray V, Galante E, Micó E (2015) Association patterns in saproxylic insect networks in three iberian Mediterranean woodlands and their resistance to microhabitat loss. PLoS One 10:e0122141. doi: 10.1371/J.pone.0122141 CrossRefPubMedPubMedCentralGoogle Scholar
  77. R development Core TEAM (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  78. Ramírez-Hernández A, Micó E, Marcos-García MA, Brustel H, Galante E (2014a) The “dehesa”, a key ecosystem in maintaining the diversity of Mediterranean saproxylic insects (Coleoptera and Diptera: Syrphidae). Biodivers Conserv 23:2069–2086. doi: 10.1007/s10531-014-0705-7
  79. Ramírez-Hernández A, Micó E, Galante E (2014b) Temporal variation in saproxylic beetle assemblages in a Mediterranean ecosystem. J Insect Conserv 18:993–1007. doi: 10.1007/s10841-014-9706-9
  80. Ranius T, Jansson N (2000) The influence of forest regrowth, original canopy cover and tree size on saproxylic beetles associated with old oaks. Biol Conserv 95:85–94CrossRefGoogle Scholar
  81. Ranius T, Jansson N (2002) A comparison of three methods to survey saproxylic beetles in hollow oaks. Biodivers Conserv 11:1759–1771CrossRefGoogle Scholar
  82. Redolfi De Zan L, Bellotti F, D’Amato D, Carpaneto GM (2014) Saproxylic beetles in three relict beech forests of central Italy: analysis of environmental parameters and implications for forest management. Forest Ecol Manag 328:229–244. doi: 10.1016/j.foreco.2014.05.040 CrossRefGoogle Scholar
  83. Regnery B, Paillet Y, Couvet D, Kerbiriou C (2013) Which factors influence the occurrence and density of tree microhabitats in Mediterranean oak forests? Forest Ecol Manag 295:118–125. doi: 10.1016/j.foreco.2013.01.009 CrossRefGoogle Scholar
  84. Ricarte A, Jover T, Marcos-García MA, Micó E, Brustel H (2009) Saproxylic beetles (Coleoptera) and hoverflies (Diptera: Syrphidae) from a Mediterranean forest: towards a better understanding of their biology for species conservation. J Nat Hist 43:583–607. doi: 10.1080/00222930802610527 CrossRefGoogle Scholar
  85. Ricarte A, Marcos-García MA, Moreno CE (2011) Assessing the effects of vegetation type on hoverfly (Diptera: Syrphidae) diversity in a Mediterranean landscape: implications for conservation. J Insect Conserv 15:865–877CrossRefGoogle Scholar
  86. Saint-Germain M, Buddle CM, Drapeau P (2006) Sampling saproxylic Coleoptera: scale issues and the importance of behaviour. Environ Entomol 35:478–487CrossRefGoogle Scholar
  87. Saint-Germain M, Drapeau P, Buddle C (2007) Host-use patterns of saproxylic phloeophagous and xylophagous Coleoptera adults and larvae along the decay gradient in standing dead black spruce and aspen. Ecography 30:737–748. doi: 10.1111/j.2007.0906-7590.05080.x CrossRefGoogle Scholar
  88. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774CrossRefPubMedGoogle Scholar
  89. Schlaghamersky DJ (2003) Saproxylic invertebrate of floodplains, a particularly endangered component of biodiversity. In: Mason F, Nardi G, Tisato M (eds) Dead wood: a key to biodiversity: proceedings of the International Symposium 29–31 May 2003, Compagnia delle Foreste, MantovaGoogle Scholar
  90. Schlegel BC, Donoso PJ (2008) Effects of forest type and stand structure on coarse woody debris in old-growth rainforests in the Valdivian Andes, south-central Chile. Forest Ecol Manag 255:1906–1914. doi: 10.1016/j.foreco.2007.12.013 CrossRefGoogle Scholar
  91. Sebek P, Barnouin T, Brin A, Brustel H, Dufrêne M, Gosselin F, Meriguet B, Micas L, Noblecourt T, Rose O, Velle L, Bouget C (2012) A test for assessment of saproxylic beetle biodiversity using subsets of “monitoring species”. Ecol Indic 20:304–315. doi: 10.1016/j.ecolind.2012.02.033 CrossRefGoogle Scholar
  92. Sierralta L, Serrano R, Rovira J, Cortés C (2011) Las áreas protegidas de Chile: antecedentes, institucionalidad, estadísticas y desafíos. Ministerio del Medio Ambiente, ChileGoogle Scholar
  93. Simonetti JA, Grez A, Estades C (2012) Biodiversity conservation in agroforestry landscapes: challenges and opportunities. Editorial Universitaria, SantiagoGoogle Scholar
  94. Sirami C, Jay-Robert P, Brustel H, Valladares L, Le Guilloux S, Martin J (2008) Saproxylic beetles assemblages of old holm-oak trees in Mediterranean region: role of a keystone structure in a changing heterogeneous landscape. Rev Ecol 10:101–114Google Scholar
  95. Sobek S, Steffan-Dewenter I, Scherber C, Tscharntke T (2009) Spatiotemporal changes of beetle communities across a tree diversity gradient. Divers Distrib 15:660–670CrossRefGoogle Scholar
  96. Solervicens J (2014) Coleópteros de la Reserva Nacional Río Clarillo en Chile central: taxonomía, biología y biogeografía: Corporación Nacional Forestal (CONAF). Gerencia de Áreas Silvestres Protegidas, ChileGoogle Scholar
  97. Solervicens J, Estrada P (1996) Coleópteros de follaje de la Reserva Nacional Río Clarillo (Chile central). Acta Entomol Chil 20:29–44Google Scholar
  98. Speight MCD (1989) Saproxylic invertebrates and their conservation: nature and environment, series 42. Council of Europe, StrasbourgGoogle Scholar
  99. Stokland J, Siitonen J, Jonsson B (2012) Biodiversity in dead wood, collection: ecology biodiversity conservation. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  100. Sverdrup-Thygeson A, Birkemoe F (2009) What window traps can tell us: effect of placement, forest openness and beetle reproduction in retention trees. J Insect Conserv 13:183–191CrossRefGoogle Scholar
  101. Sverdrup-Thygeson A, Skarpaas O, Ødegaard F (2010) Hollow oaks and beetle conservation: the significance of the surroundings. Biodivers Conserv 19:837–852CrossRefGoogle Scholar
  102. Systat Software Inc. (2006) SigmaStat for windows (version 3.5)Google Scholar
  103. Thompson FC, Rotheray G (1998) Family Syrphidae. In: Papp L, Darvas B (eds) Contributions to a manual of Paleartic Diptera. Science Herald, Budapest, pp 81–139Google Scholar
  104. Underwood EC, Viers JH, Klausmeyer KR, Cox RL, Shaw MR (2009) Threats and biodiversity in the mediterranean biome. Divers Distrib 15:188–197CrossRefGoogle Scholar
  105. Valladares L (2000) Exploration et caractérisation de méthodes de piégeage adaptées aux coléoptères saproxyliques en forêts feuillues, mixtes ou résineuses. Mémoire de DESU, Université Paul Sabatier Toulouse, ESAP: 69 pGoogle Scholar
  106. Villagrán C (1995) Quaternary history of the Mediterranean vegetation of Chile. In: Arroyo MTK, Zedler PH, Fox MD (eds) Ecology and biogeography of Mediterranean ecosystems in Chile, California and Australia. Springer, Berlin, pp 3–20CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Alejandra García-López
    • 1
    • 2
  • Ana Paola Martínez-Falcón
    • 3
  • Estefanía Micó
    • 2
  • Patricia Estrada
    • 4
  • Audrey A. Grez
    • 1
  1. 1.Laboratorio de Ecología de Ambientes FragmentadosUniversidad de ChileSantiagoChile
  2. 2.Centro Iberoamericano de la BiodiversidadUniversidad de AlicanteAlicanteSpain
  3. 3.Laboratorio de Ecología de Comunidades, Centro de Investigaciones Biológicas, Instituto de Ciencias Básicas e IngenieríaUniversidad Autónoma del Estado de HidalgoPachucaMexico
  4. 4.Instituto de EntomologíaUniversidad Metropolitana de Ciencias de la EducaciónSantiagoChile

Personalised recommendations