Journal of Insect Conservation

, Volume 20, Issue 3, pp 417–431 | Cite as

Diversity of Tiphiidae (Insecta: Hymenoptera) in the fragmented Brazilian semi-deciduous Atlantic Forest

  • Cíntia Eleonora Lopes Justino
  • Eduardo Fernando dos Santos
  • Fernando Barbosa Noll


The Atlantic Forest is one of the most important areas of biodiversity in the world, but it has been largely replaced with agropastoral areas and at the present only 12.5 % of the original cover remains. Despite the ecological importance of insects, few studies have been used in conservation approaches for the Atlantic Forest, mainly due to a great taxonomic impediment. A group quite ecologically important but deeply neglected includes parasitoid wasps that control a great number of invertebrates, like tiphiid wasps that are parasitoids of underground coleopteran larvae. The present study aimed to estimate Tiphiidae species richness and diversity in 15 patches of a highly fragmented Atlantic Forest region, using factors that drive the diversity pool from a metacommunity, such as immigration and speciation probabilities. The parameters were estimated using the Neutral Biodiversity Theory, which is based on the total ecological equivalence of species at the same trophic level. Diversity values were molded to the area size, the immigration probabilities, and/or the speciation probability. Eight genera and 460 individuals of Thynninae, Myzininae and Tiphiinae were collected. Variation in species richness, estimated by both rarefaction and first-order jackknife methods, was explained by patch size and by immigration and speciation probabilities. These variables also explained the variation in Shannon diversity and species evenness. Variations in species richness and diversity of Tiphiidae are strongly associated with neutral processes, but they are also influenced by forest fragmentation and intensive agricultural activities.


Parasitoids wasps Tropical forest Agricultural landscape Deforestation Neutral model 



We are grateful to the Laboratório de Aculeata Sistemática e Comportamento team, who helped us with the collection in the field, to Dr. Maria Stela Maioli Castilho Noll for a critical review of the manuscript and Dr. John Wenzel for reading the final version of this manuscript. The São Paulo Research Foundation (Fapesp) supported this study (Process Numbers: 2004/04820-3, 2008/09145-3 and 2009/16580-0).

Supplementary material

10841_2016_9875_MOESM1_ESM.docx (26 kb)
Supplementary material 1 (DOCX 25 kb)
10841_2016_9875_MOESM2_ESM.docx (32 kb)
Supplementary material 2 (DOCX 32 kb)


  1. Adu G, Marbuah G, Mensah JT (2012) Contribution of agriculture to deforestation in the tropics: a theoretical investigation. Afr Rev Econ Finance 3:1–12Google Scholar
  2. Alcock J (2000) Interactions between the sexually deceptive orchid Spiculaea ciliate and its wasp pollinator Thynnoturneria sp. (Hymenoptera: Thynninae). J Nat Hist 34:629–636. doi: 10.1080/002229300299480 CrossRefGoogle Scholar
  3. Allen HW (1972) A monographic study of the subfamily Tiphiinae (Hymenoptera: Tiphiidae) of South America. Smithson Contrib Zool 113:1–76CrossRefGoogle Scholar
  4. Ayres JM, Fonseca GAB Rylands, Queiroz HL, Pinto LP, Masterson D, Cavalcanti RB (2005) Os corredores ecológicos das florestas tropicais do Brasil. Sociedade Civil Mamirauá, BelémGoogle Scholar
  5. Barbosa O, Marquet P (2002) Effects of forest fragmentation on the beetle assemblage at the relict forest of Fray Jorge Chile. Oecologia 132:296–306. doi: 10.1007/s00442-002-0951-3 CrossRefGoogle Scholar
  6. Beketov MA, Kefford BJ, Schäfer RB, Liess M (2013) Pesticides reduce regional biodiversity of stream invertebrates. Proc Natl Acad Sci USA 110:11039–11043. doi: 10.1073/pnas.1305618110 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Belasque Jr. J, Yamamoto PT, Miranda MP, Bassanezi RB, Ayres AJ, Bové JM (2010) Controle do huanglongbing no estado de São Paulo, Brasil. Citrus Res Technol 31:53–64CrossRefGoogle Scholar
  8. Bell G (2001) Neutral macroecology. Science 293:2413–2418. doi: 10.1126/science.293.5539.2413 PubMedCrossRefGoogle Scholar
  9. Berendse F, Chamberlain D, Kleijn D, Schekkerman H (2004) Declining biodiversity in agricultural landscapes and the effectiveness of agri-environment schemes. Ambio 33:499–502PubMedCrossRefGoogle Scholar
  10. Brothers DJ, Finnamore AT (1995) The vespoid families (except vespids and ants). In: Goulet H, Huber JT (eds) Hymenoptera of the world: an identification guide to families. Research Branch Agriculture Canada Publication, Otawa, pp 161–278Google Scholar
  11. Brown GR (1998) Revision of the Neozeleboria cryptoides species group of thynnine wasps (Hymenoptera: Tiphiidae): pollinators of native orchids. Aust J Entomol 37:193–205. doi: 10.1111/j.1440-6055.1998.tb01572.x CrossRefGoogle Scholar
  12. Brown GR (2005) A revision of Tachyphron Brown and description of two new genera within the Ariphron group (Hymenoptera: Tiphiidae). J Nat Hist 39:197–239. doi: 10.1080/0022290310001657892 CrossRefGoogle Scholar
  13. Câmara IG (2003) Brief history of conservation in the Atlantic forest. In: Galindo-Leal C, Câmara IG (eds) The Atlantic Forest of South America: biodiversity status, threats, and outlook. Island Press, Washington, DC, pp 31–42Google Scholar
  14. Campos PRA, Neto EDC, Oliveira VM, Gomes MAF (2012) Neutral communities in fragmented landscapes. Oikos 11:1737–1748. doi: 10.1111/j.1600-0706.2011.20336.x CrossRefGoogle Scholar
  15. Carvalho KS, Vasconcelos HL (1999) Forest fragmentation in central Amazonia and its effects on litter-dwelling ants. Biol Conserv 91:151–157. doi: 10.1016/S0006-3207(99)00079-8 CrossRefGoogle Scholar
  16. Chave J (2004) Neutral theory and community ecology. Ecol Lett 7:241–253. doi: 10.1111/j.1461-0248.2003.00566.x CrossRefGoogle Scholar
  17. Comins HN, Hassell MP, May RM (1992) The spatial dynamics of host–parasitoid systems. J Anim Ecol 61:735–748. doi: 10.2307/5627 CrossRefGoogle Scholar
  18. Connor EF, McCoy ED (2001) Species-area relationships. In: Levin SA (ed) Encyclopedia of biodiversity, vol 5, 2nd edn. Academic Press, Waltham, pp 397–411CrossRefGoogle Scholar
  19. Dean W (1997) With broadax and firebrand: the destruction of the Brazilian Atlantic Forest. University of California Press, BerkeleyGoogle Scholar
  20. Didham RK, Hammond PM, Lawton JH, Eggleton P, Stork NE (1998a) Beetle species responses to tropical forest fragmentation. Ecol Monogr 68:295–323. doi: 10.1890/0012-9615(1998)068[0295:BSRTTF]2.0.CO;2 CrossRefGoogle Scholar
  21. Didham RK, Lawton JH, Hammond PM, Eggleton P (1998b) Trophic structure stability and extinction dynamics of beetles (Coleoptera) in tropical forest fragments. Philos Trans R Soc Lond B Biol Sci B 353:437–451. doi: 10.1098/rstb.1998.0221 CrossRefGoogle Scholar
  22. Diniz-Filho JAF, De Marco P, Hawkins BA (2010) Defying the curse of ignorance: perspectives in insect macroecology and conservation biogeography. Insect Conserv Divers 3:172–179. doi: 10.1111/j.1752-4598.2010.00091.x Google Scholar
  23. Dornelas M (2010) Disturbance and change in biodiversity. Philos Trans R Scoc Lond B Biol Sci B 365:3719–3727. doi: 10.1098/rstb.2010.0295 CrossRefGoogle Scholar
  24. Durrett R, Levin S (1996) Spatial models for species-area curves. J Theor Biol 179:119–127. doi: 10.1006/jtbi.1996.0053 CrossRefGoogle Scholar
  25. Economo EP, Keitt TH (2008) Species diversity in neutral metacommunities: a network approach. Ecol Lett 11:52–62. doi: 10.1006/jtbi.1996.0053 PubMedGoogle Scholar
  26. Elzinga JA, van Nouhuys S, van Leeuwen D-J, Biere A (2007) Distribution and colonisation ability of three parasitoids and their herbivorous host in a fragmented landscape. Basic Appl Ecol 8:75–88. doi: 10.1016/j.baae.2006.04.003 CrossRefGoogle Scholar
  27. Etienne RS (2005) A new sampling formula for neutral biodiversity. Ecol Lett 8:253–260CrossRefGoogle Scholar
  28. Etienne RS, Olff H (2005) Confronting different models of community structure to species-abundance data: a Bayesian model comparison. Ecol Lett 8:493–504. doi: 10.1111/j.1461-0248.2005.00745.x PubMedCrossRefGoogle Scholar
  29. Etienne RS, Apol MEF, Olff H, Weissing FJ (2007) Modes of speciation and the neutral theory of biodiversity. Oikos 116:241–258. doi: 10.1111/j.2007.0030-1299.15438.x CrossRefGoogle Scholar
  30. Ewers RM, Thorpe S, Didham RK (2007) Synergistic interactions between edge and area effects in a heavily fragmented landscape. Ecology 88:96–106PubMedCrossRefGoogle Scholar
  31. FAO (2014) State of the world’s forests: enhancing the socioeconomic benefits from forests. Accessed 24 Jan 2015
  32. Fundação SOS Mata Atlântica, INPE (2002) Atlas dos remanescentes florestais da Mata Atlântica: Período 1995–2000. Accessed 20 Feb 2015
  33. Fundação SOS Mata Atlântica, INPE (2014) Atlas dos remanescentes florestais da Mata Atlântica: Período 2012–2013. Accessed 20 Feb 2015
  34. Gardner RH, Engelhardt KAM (2008) Spatial processes that maintain biodiversity in plant communities. Perspect Plant Ecol 9:211–228CrossRefGoogle Scholar
  35. Gascon C, Lovejoy TE, Bierregaard RO Jr, Malcolm JR, Stouffer PC, Vasconcelos HL, Laurance WF, Laurance B, Tocher M, Borges S (1999) Matrix habitat and species richness in tropical forest remnants. Biol Conserv 91:223–229. doi: 10.1016/S0006-3207(99)00080-4 CrossRefGoogle Scholar
  36. Genise J, Kimsey LS (1991) New genera of South American Thynninae (Tiphiidae, Hymenoptera). Psyche 98:57–69CrossRefGoogle Scholar
  37. Gilbert-Norton L, Wilson R, Stevens JR, Beard KH (2010) A meta-analytic review of corridor effectiveness. Conserv Biol 24:660–668. doi: 10.1111/j.1523-1739.2010.01450.x PubMedCrossRefGoogle Scholar
  38. Gotelli NJ, Chao A (2013) Measuring and estimating species richness, species diversity, and biotic similarity from sampling data. In: Levin SA (ed) Encyclopedia of Biodiversity, 2sd, vol 5. Academic Press, Waltham, pp 195–211CrossRefGoogle Scholar
  39. Goulson D (2013) An overview of the environmental risks posed by neonicotinoid insecticides. J Appl Ecol 50:977–987. doi: 10.1111/1365-2664.12111 CrossRefGoogle Scholar
  40. Green JL, Ostling A (2003) Endemics-area relationships: the influence of species dominance and spatial aggregation. Ecology 84:3090–3097CrossRefGoogle Scholar
  41. Haila Y (2002) A conceptual genealogy of fragmentation research: from island biogeography to landscape ecology. Ecol Appl 12:321–334. doi: 10.1890/1051-0761(2002)012[0321:ACGOFR]2.0.CO;2 Google Scholar
  42. Handel SN, Peakall R (1993) Thynnine wasps discriminate among heights when seeking mates: tests with a sexually deceptive orchid. Oecologia 95:241–245. doi: 10.1007/BF00323496 CrossRefGoogle Scholar
  43. Hankin RKS (2015) Package untb version 1.7-2: ecological drift under the UNTB. Accessed 23 Feb 2015
  44. Harper KA, MacDonald E, Burton PJ, Chen J, Brosofske KD, Saunders SC, Euskirchen ES, Roberts D, Jaiteh MS, Essen P-A (2005) Edge influence on forest structure and composition in fragmented landscapes. Conserv Biol 19:768–782. doi: 10.1111/j.1523-1739.2005.00045.x CrossRefGoogle Scholar
  45. Hassell MP (2000) The spatial and temporal dynamics of host–parasitoid interactions. Oxford University Press, OxfordGoogle Scholar
  46. Hawkins BA, Gross P (1992) Species richness and population limitation in insect parasitoid-host systems. Am Nat 139:417–423CrossRefGoogle Scholar
  47. He F (2005) Deriving a neutral model of species abundance from fundamental mechanisms of population dynamics. Funct Ecol 19:187–193. doi: 10.1111/j.0269-8463.2005.00944.x CrossRefGoogle Scholar
  48. He F, Legendre P (2002) Species diversity patterns derived from species-area models. Ecology 83:1185–1198. doi: 10.2307/3071933 Google Scholar
  49. Hillebrand H, Bennett DM, Cadotte MW (2008) Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology 89:1510–1520. doi: 10.1890/07-1053.1 PubMedCrossRefGoogle Scholar
  50. Hubbell SP (1997) A unified theory of biogeography and relative species abundance and its application to tropical rain forests and coral reefs. Coral Reefs 16:S9–S21. doi: 10.1007/s003380050237 CrossRefGoogle Scholar
  51. Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, PrincetonGoogle Scholar
  52. Hubbell SP, Lake JK (2003) The neutral theory of biodiversity and biogeography, and beyond. In: Blackburn TM, Gaston KJ (eds) Macroecology: concepts and consequences. Blackwell Publishing, Oxford, pp 45–63Google Scholar
  53. Joppa LOG, Roberts DL, Myers N, Pimm SL (2011) Biodiversity hotspots house most undiscovered plant species. Proc Natl Acad Sci USA 108:13171–13176. doi: 10.1073/pnas.1109389108 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Justino CEL, Santos EF (2016) Catálago Taxonômico da Fauna do Brasil. Accessed 15 April 20016
  55. Justino CEL, Santos EF, Noll FB (2013) Geographic note on species of the genus Upa Kimsey, 1991 (Hymenoptera: Tiphiidae, Thynninae) in the Atlantic Forest, Brazil. Check List 9:1057–1061CrossRefGoogle Scholar
  56. Kadmon R, Benjamini Y (2006) Effects of productivity and disturbance on species richness: a neutral model. Am Nat 167:939–946. doi: 10.1086/504602 PubMedCrossRefGoogle Scholar
  57. Kaimowitz D, Angelsen A (1998) Economic models of tropical deforestation: a review. Center for International Forestry Research, BogorGoogle Scholar
  58. Kevan P (1973) Parasitoid wasps as flower visitors in the Canadian high arctic. Anzeiger für Schädlingskunde, Pflanzen- und Umweltschutz 46(1):3–7. doi: 10.1007/BF01992960 CrossRefGoogle Scholar
  59. Kimsey LS (1991) Relationships among the tiphiid wasp subfamilies (Hymenoptera). Syst Entomol 16:427–438. doi: 10.1111/j.1365-3113.1991.tb00677.x CrossRefGoogle Scholar
  60. Kimsey LS (1992) Phylogenetic relations among the South American thynninae tiphiidae wasps. Syst Entomol 17:133–144CrossRefGoogle Scholar
  61. Kimsey LS (2004) Illustrated keys to genera of the male wasps in the subfamily Thynninae (Hymenoptera: Thiphiidae). Proc Entomol Soc Wash 106(3):571–585Google Scholar
  62. Kissinger G, Herold M, De Sy V (2012) Drivers of deforestation and forest degradation: a synthesis report for REDD+ policymakers. Lexeme Consulting, Vancouver. Accessed 24 Jan 2015
  63. Kopp M (2010) Speciation and the neutral theory of biodiversity. BioEssays 32:564–570. doi: 10.1002/bies.201000023 PubMedCrossRefGoogle Scholar
  64. Laurance WF (2008) Theory meets reality: how habitat fragmentation research has transcended island. Biogeographic theory. Biol Conserv 141:1731–1744. doi: 10.1016/j.biocon.2008.05.011 CrossRefGoogle Scholar
  65. Laurance WF, Nascimento HEM, Laurance SG, Andrade A, Ewers RM, Harms KE, Luizão RCC, Ribeiro JE (2007) Habitat fragmentation, variable edge effects, and the landscape-divergence hypothesis. PLoS One 2:e1017. doi: 10.1371/journal.pone.0001017 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Leibold MA, McPeek MA (2006) Coexistence of the niche and neutral perspectives in community ecology. Ecology 87:1399–1410PubMedCrossRefGoogle Scholar
  67. Lewinsohn TM, Prado PI (2002) Biodiversidade Brasileira: síntese do estado atual do conhecimento. Editora Contexto, São PauloGoogle Scholar
  68. Lewinsohn TM, Freitas AVL, Prado PI (2005) Conservation of terrestrial invertebrates and their habitats in Brazil. Conserv Biol 19:640–645. doi: 10.1111/j.1523-1739.2005.00682.x CrossRefGoogle Scholar
  69. Lövei GL, Magura T, Tóthmérész B, Ködöböcz V (2006) The influence of matrix and edges on species richness patterns of ground beetles (Coleoptera: Carabidae) in habitat islands. Glob Ecol Biogeogr 15:283–289. doi: 10.1111/j.1466-8238.2005.00221.x CrossRefGoogle Scholar
  70. MacArthur RH, Wilson EO (1963) An equilibrium theory of insular zoogeography. Evolution 17:373–387CrossRefGoogle Scholar
  71. MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, PrincetonGoogle Scholar
  72. Magurran AE (2004) Measuring biological diversity. Blackwell Publishing, MaldenGoogle Scholar
  73. Mangel M (2002) The importante role of theory in conservation biology. Conserv Biol 16:843–844CrossRefGoogle Scholar
  74. Mant JG, Schiestl FP, Peakall R, Weston PH (2002) A phylogenetic study of pollinator conservatism among sexually deceptive orchids. Evolution 6:888–898CrossRefGoogle Scholar
  75. Mant JG, Brown GR, Weston PH (2005) Opportunistic pollinator shifts among sexually deceptive orchids indicated by a phylogeny of pollinating and non-pollinating thynnine wasps (Tiphiidae). Biol J Linn Soc 86:381–395. doi: 10.1111/j.1095-8312.2005.00547.x CrossRefGoogle Scholar
  76. Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253. doi: 10.1038/35012251 PubMedCrossRefGoogle Scholar
  77. Marinoni L, Peixoto AL (2010) As coleções biológicas como fonte dinâmica permanente de conhecimento sobre a biodiversidade. Ciência e Cultura 62:54–57Google Scholar
  78. Matthews TJ, Whittaker RJ (2014) Neutral theory and the species abundance distribution: recent developments and prospects for unifying niche and neutral perspectives. Ecol Evol 4:2263–2277. doi: 10.1002/ece3.1092 PubMedPubMedCentralGoogle Scholar
  79. May RM, Hassell MP, Anderson RM, Tonkyn DW (1981) Density dependence in host–parasitoid models. J Anim Ecol 50:855–865. doi: 10.2307/4142 CrossRefGoogle Scholar
  80. Mech SG, Hallett JG (2001) Evaluating the effectiveness of Corridors: a genetic approach. Conserv Biol 15:467–474CrossRefGoogle Scholar
  81. Mendenhall CD, Karp DS, Meyer CFJ, Hadly EA, Daily GC (2014) Predicting biodiversity change and averting colapse in agricultural landscapes. Nature 509:213–217. doi: 10.1038/nature13139 PubMedCrossRefGoogle Scholar
  82. Menz MHM, Phillips RD, Dixon KW, Peakall R, Didham RK (2013) Mate-searching behavior of common and rare wasps and the implications for pollen movement of the sexually deceptive orchids they pollinate. PLoS One 8:e59111. doi: 10.1371/journal.pone.0059111 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Metzger JP (1997) Relationships between landscape structure and tree species diversity in tropical forests of South-East Brazil. Landsc Urban Plan 37:29–35CrossRefGoogle Scholar
  84. Meyer N (1988) Threatened biotas: “hot spots” in tropical forests. Environmentalist 8:187–208CrossRefGoogle Scholar
  85. Moguel P, Toledo VM (1999) Biodiversity conservation in traditional coffee systems of Mexico. Conserv Biol 13:11–21. doi: 10.1046/j.1523-1739.1999.97153.x CrossRefGoogle Scholar
  86. Necchi O Jr, Branco LHZ, Casatti L, Castilho-Noll MSM, Feres RJF, Noll FB, Ranga NT, Rezende AA, Rossa-Feres DC (2012) Características da região noroeste do estado de São Paulo e dos fragmentos florestais remanescentes estudados. In: Necchi O Jr (ed) Fauna e Flora de Fragmentos Florestais Remanescentes da Região Noroeste do Estado de São Paulo. Editora Holos, Ribeirão Preto, pp 15–36Google Scholar
  87. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2015) Package vegan version 2.2-1: community ecology package. Accessed 23 Feb 2015
  88. Osten T (1999) The phoretic copulation of Thynninae in an ecological and evolutionary perspective (Hymenoptera, Thiphiidae). Linzer biologische Beiträge 31:755–762Google Scholar
  89. Parra JRP (2014) Biological control in Brazil: an overview. Sci Agric 71:345–355. doi: 10.1590/0103-9016-2014-0167 CrossRefGoogle Scholar
  90. Pate VSL (1947) A conspectus of the Tiphiidae, with particular reference to the nearctic forms (Hymenoptera, Aculeata). J N Y Entomol Soc 55:115–145Google Scholar
  91. Peakall R, Beattie AJ (1996) Ecological and genetic consequences of pollination by sexual deception in the orchid Caladenia tentactulata. Evolution 50:2207–2220. doi: 10.2307/2410692 CrossRefGoogle Scholar
  92. Peakall R, Ebert D, Poldy J, Barrow RA, Francke W, Bower CC, Schiestl FP (2010) Pollinator specific ity, floral odour chemistry and the phylogeny of Australian sexually deceptive Chiloglottis orchid simplications for pollinator-driven speciation. New Phytol 188:437–450. doi: 10.1111/j.1469-8137.2010.03308.x PubMedCrossRefGoogle Scholar
  93. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen–Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644. doi: 10.5194/hess CrossRefGoogle Scholar
  94. Pereira JAA, Oliveira-Filho AT, Lemos-Filho JP (2007) Environmental heterogeneity and disturbance by humans control much of the tree species diversity of Atlantic Montane forest fragments in SE Brazil. Biodivers Conserv 16:1761–1784. doi: 10.1007/s10531-006-9063-4 CrossRefGoogle Scholar
  95. Phillips RD, Hopper SD, Dixon KW (2010) Pollination ecology and the possible impacts of environmental change in the Southwest Australian Biodiversity Hotspot. Philos Trans R Soc B 365:517–528. doi: 10.1098/rstb.2009.0238 CrossRefGoogle Scholar
  96. Pinheiro J, Bates D, DebRoy S, Sarkar D, EISPACK R-core team (2015) Package nlme version 3.1-120: linear and nonlinear mixed effects models. 23 Feb 2015
  97. Pirard R, Treyer S (2010) Agriculture and deforestation: what role should REDD + and public support policies play? Idées Pour le débat 10:1–17Google Scholar
  98. Potter DA, Rogers ME (2008) Tiphiidae Wasps (Hymenoptera Tiphiidae). In: Capinera JL (ed) Encyclopedia of entomology. Springer, New York, pp 3824–3826Google Scholar
  99. Price PW (1991) Evolutionary theory of host and parasitoid interactions. Biol Control 1:83–93. doi: 10.1016/1049-9644(91)90107-B CrossRefGoogle Scholar
  100. R Development Core Team (2013) R: a language and environment for statistical computing. Vienna, R Foundation for Statistical Computing. Accessed 23 Feb 2015
  101. Rafael JA, Aguiar AP, Amorim DS (2009) Knowledge of insect diversity in Brazil: challenges and advances. Neotrop Entomol 38:565–570PubMedCrossRefGoogle Scholar
  102. Ranta P, Blom T, Niemela J, Joensuu E, Siitonen M (1998) The fragmented Atlantic rain forest of Brazil: size, shape and distribution of forest fragments. Biodivers Conserv 7:385–403. doi: 10.1023/A:1008885813543 CrossRefGoogle Scholar
  103. Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153. doi: 10.1016/j.biocon.2009.02.021 CrossRefGoogle Scholar
  104. Ribeiro MC, Martensen AC, Metzger JP, Tabarelli M, Scarano F, Fortin MJ (2011) The Brazilian Atlantic Forest: a shrinking biodiversity hotspot. In: Habil JC, Zachos FE (eds) Biodiversity hotspots distribution and protection of conservation priority areas. Springer, Heidelberg, pp 405–434Google Scholar
  105. Ridsdill Smith TJ (1970a) The behaviour of Hemithynnus hyalinatus (Hymenoptera: Tiphiidae), with notes on some other Thynninae. Aust J Entomol 9:171–238CrossRefGoogle Scholar
  106. Ridsdill Smith TJ (1970b) The biology of Hemithynnus hyalinatus (Hymenoptera: Tiphiidae), a parasite on scarabaeid Larvae. J Aust Entomol Soc 9:183–195CrossRefGoogle Scholar
  107. Rohani P, Miramontes O (1995) Host–parasitoid metapopulations: the consequences of parasitoid aggregation on spatial dynamics and searching efficiency. Proc R Soc Lond B Biol Sci 260:335–342CrossRefGoogle Scholar
  108. Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  109. Rosindell J, Hubbell SP, Etienne RS (2011) The unified neutral theory of biodiversity and biogeography at age ten. Trends Ecol Evol 26:340–348. doi: 10.1016/j.tree.2011.03.024 PubMedCrossRefGoogle Scholar
  110. Rosindell J, Hubbell SP, He F, Harmon LJ, Etienne RS (2012) The case for ecological neutral theory. Trends Ecol Evol 27:203–208. doi: 10.1016/j.tree.2012.01.004 PubMedCrossRefGoogle Scholar
  111. Rouget M, Cowling RM, Lombard AT, Knight AT, Kerley GIH (2006) Designing large-scale conservation corridors for pattern and process. Conserv Biol 20:549–561. doi: 10.1111/j.1523-1739.2006.00297.x PubMedCrossRefGoogle Scholar
  112. Santos EF, Brandão CRF (2011) Structure of wasp assemblage (Insecta: Hymenoptera, Vespoidea): taxonomic and functional diversity, and spatial organization along an elevational gradiente in the Atlantic Rain Forest, Brazil. VDM Verlag Dr. Müller, SaarbrückenGoogle Scholar
  113. Santos BA, Peres CA, Oliveira MA, Grillo A, Alves-Costa CP, Tabarelli M (2008) Drastic erosion in functional attributes of tree assemblages in Atlantic forest fragments of northeastern Brazil. Biol Conserv 141:249–260. doi: 10.1016/j.biocon.2007.09.018 CrossRefGoogle Scholar
  114. Santos EF, Noll FB, Brandão CRF (2014) Functional and taxonomic diversity of stinging wasps in Brazilian Atlantic Rainforest areas. Neotrop Entomol 43:97–105. doi: 10.1007/s13744-013-0183-8 PubMedCrossRefGoogle Scholar
  115. Scarano FR (2002) Structure, function and floristic relationships of plant communities in stressful habitats marginal to the Brazilian Atlantic rainforest. Ann Bot 90:517–524PubMedPubMedCentralCrossRefGoogle Scholar
  116. Schoener TW (2010) The MacArthur-Wilson Equilibrium Model. In: Losos JB, Ricklefs RE (eds) The theory of Island biogeography revisited. Princeton University Press, Pricenton, pp 52–87Google Scholar
  117. Shackelford GE, Steward PR, German RN, Sait SM, Benton TG (2015) Conservation planning in agricultural landscapes: hotspots of conflict between agriculture and nature. Divers Distrib 21:357–367. doi: 10.1111/ddi.12291 PubMedCrossRefGoogle Scholar
  118. Soares AFS, Leão MMD, Faria VHF, Costa MCM, Moura ACM, Ramos VDV, Neto MRV, Costa EP (2013) Occurrence of pesticides from coffee crops in surfasse water. Rev Ambiente Água 8:62–72. doi: 10.4136/ambi-agua.1053 Google Scholar
  119. Sodhi NS, Kohl LP, Brook BE, Ng PKL (2004) Southeast Asian biodiversity: an impending disaster. Trends Ecol Evol 19:654–660. doi: 10.1016/j.tree.2004.09.006 PubMedCrossRefGoogle Scholar
  120. Stoutamire WF (1983) Wasp-pollinated species of Caladenia (Orchidaceae) in south-western Australia. Aust J Bot 31:383–394. doi: 10.1071/BT9830383 CrossRefGoogle Scholar
  121. Tabarelli M, Silva JMC, Gascon C (2004) Forest fragmentation, synergisms and the impoverishment of neotropical forests. Biodivers Conserv 13:1419–1425CrossRefGoogle Scholar
  122. Tabarelli M, Aguiar AV, Ribeiro MC, Metzger JP, Peres CA (2010) Prospects for biodiversity conservation in the Atlantic Forest: lessons from aging human-modified landscapes. Biol Conserv 143:2328–2340. doi: 10.1016/j.biocon.2010.02.005 CrossRefGoogle Scholar
  123. Tewksbury JJ, Levey DJ, Haddad NM, Sargent S, Orrock JL, Weldon A, Danielson BJ, Brinkerhoff J, Damschen E, Townsend P (2002) Corridors affect plants, animals, and their interactions in fragmented landscapes. Proc Natl Acad Sci USA 99:12923–12926. doi: 10.1073/pnas.202242699 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Walde SJ, Murdoch WW (1988) Spatial density dependence in parasitoids. Annu Rev Entomol 33:441–466. doi: 10.1146/annurev.en.33.010188.002301 CrossRefGoogle Scholar
  125. Wilson HB, Hassell MP (1997) Host–parasitoid spatial models: the interplay of demographic stochasticity and dynamics. Proc R Soc Lond B Biol Sci 264:1189–1195CrossRefGoogle Scholar
  126. Wood S (2014) Package mgcv version 1.8-4: Mixed Gam computation vehicle with GCV/AIC/REML smoothness estimation. Accessed 23 Feb 2015
  127. Yahner RH (1988) Changes in wildlife communities near edges. Conserv Biol 2:333–339CrossRefGoogle Scholar
  128. Zillio T, Volkov I, Banavar JR, Hubbell SP, Maritan A (2005) Spatial scaling in model plant communities. Phys Rev Lett 95:098101-1–098101-4CrossRefGoogle Scholar
  129. Zipkin EF, DeWan A, Royle JA (2009) Impacts of forest fragmentation on species richness: a hierarchical approach to community modelling. J Appl Ecol 46:815–822. doi: 10.1111/j.1365-2664.2009.01664.x CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Cíntia Eleonora Lopes Justino
    • 1
  • Eduardo Fernando dos Santos
    • 1
  • Fernando Barbosa Noll
    • 1
  1. 1.Departamento de Zoologia e Botânica, Instituto de Biociências, Letras e Ciências ExatasUniversidade Estadual Paulista “Júlio de Mesquita Filho”São José do Rio PretoBrazil

Personalised recommendations