Journal of Insect Conservation

, Volume 19, Issue 6, pp 1075–1087 | Cite as

Shift of rove beetle assemblages in reforestations: Does nativity matter?

  • Dávid D. Nagy
  • Tibor Magura
  • Zsuzsanna Debnár
  • Roland Horváth
  • Béla Tóthmérész


Creating plantations after clear-cutting of native forests is a serious risk for biodiversity. Rove beetles were collected by litter sifting in non-native plantations (black locust, Scots pine, red oak), in native oak plantation and mature oak forest as control. We hypothesised that diversity and composition of the rove beetles in the mature forest would be different from those in the plantations. We expected that reforestation with native species would have less harmful effects on rove beetles than reforestation with non-native species. In accordance with our hypotheses the overall number of rove beetle individuals and species, as well as the diversity of hygrophilous and decaying material dependent rove beetles were significantly lower in the plantations than in the mature oak forest. However, the overall species richness and the diversity of hygrophilous and decaying material dependent rove beetles were significantly higher in the native plantation compared to the non-native ones. There was no significant correlation between the diversity of these rove beetles and the soil moisture and decaying woody materials as limiting resources; thus, our study did not support the resource quantity hypothesis. The cover of herbs and shrubs, the soil temperature and soil pH were the most important factors controlling the diversity of rove beetles. Our results suggest that reforestation with native tree species provides more suitable habitat for rove beetles than non-native ones. However, it seems that rove beetle assemblages did not recover even after 40 years of reforestation with native tree species due to their specific ecological demands.


Diversity Hygrophilous species Mature oak forest Native plantation Non-native plantations Resource quantity hypothesis 



We are grateful to András Kelemen, Gyula Szabó, Bence Tajthi for their help during the field and laboratory work. We are also grateful to György Makranczy and László Ádám for their help in the identifications. The authors would like to especially thank John W. Dover for his thorough editorial work. This work was partially supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP-4.2.2/B-10/1-2010-0024 and TÁMOP 4.2.4 A/2-11-1-2012-0001 ‘National Excellence Program’. Futhermore, the research was supported by the Internal Research Project of the University of Debrecen and the SROP-4.2.2.B-15/1/KONV20150001 project. Research was supported by the Hungarian Academy of Sciences and Hungarian Research Found (OTKA K-116639).


  1. ÁESZ (2008) Magyarország erdőállományai 2006. [Forest Stands in Hungary 2006]. Állami Erdészeti Szolgálat, BudapestGoogle Scholar
  2. Anderson RS, Ashe JS (2000) Leaf litter inhabiting beetles as surrogates for establishing priorities for conservation of selected tropical montane cloud forests in Honduras, Central America (Coleoptera; Staphylinidae, Curculionidae). Biodivers Conserv 9:617–653. doi: 10.1023/A:1008937017058 CrossRefGoogle Scholar
  3. Anderson HW, Hoover MD, Reinhart KG (1976) Forests and water: effects of forest management on floods, sedimentation, and water supply. USDA For Serv, Gen Tech Rep PSW-18, Berkeley, CAGoogle Scholar
  4. Andersson M, Kjøller A, Struwe S (2004) Microbial enzyme activities in leaf litter, humus and mineral soil layers of European forests. Soil Biol Biochem 36:1527–1537. doi: 10.1016/j.soilbio.2004.07.018 CrossRefGoogle Scholar
  5. Assing V, Schülke M (2011) Freude-Harde-Lohse-Klausnitzer - Die Käfer Mitteleuropas. Band 4. Staphylinidae I. Zweite neubearbeitete Auflage. Spektrum Akademischer Verlag, Heidelberg und BerlinGoogle Scholar
  6. Baini F, Pitzalis M, Taiti S, Taglianti AV, Zapparoli M, Bologna MA (2012) Effects of reforestation with Quercus species on selected arthropod assemblages (Isopoda Oniscidea, Chilopoda, Coleoptera Carabidae) in a Mediterranean area. For Ecol Manage 286:183–191. doi: 10.1016/j.foreco.2012.08.042 CrossRefGoogle Scholar
  7. Barlow J, Gardner TA, Ferreira LV, Peres CA (2007) Litter fall and decomposition in primary, secondary and plantation forests in the Brazilian Amazon. For Ecol Manage 247:91–97. doi: 10.1016/j.foreco.2007.04.017 CrossRefGoogle Scholar
  8. Bartels SF, Chen HYH (2010) Is understory plant species diversity driven by resource quantity or resource heterogeneity? Ecology 91:1931–1938. doi: 10.1890/09-1376.1 CrossRefPubMedGoogle Scholar
  9. Bengtsson J, Nilsson SG, Franc A, Menozzi P (2000) Biodiversity, disturbances, ecosystem function and management of European forests. For Ecol Manage 132:39–50. doi: 10.1016/S0378-1127(00)00378-9 CrossRefGoogle Scholar
  10. Boháč J (1999) Staphylinid beetles as bioindicators. Agric Ecosyst Environ 74:357–372. doi: 10.1016/S0167-8809(99)00043-2 CrossRefGoogle Scholar
  11. Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Use R!. Springer, New YorkCrossRefGoogle Scholar
  12. Brockerhoff EG, Jactel H, Parrotta JA, Quine CP, Sayer J (2008) Plantation forests and biodiversity: oxymoron or opportunity? Biodivers Conserv 17:925–951. doi: 10.1007/s10531-008-9380-x CrossRefGoogle Scholar
  13. Buddle CM, Langor DW, Pohl GR, Spence JR (2006) Arthropod responses to harvesting and wildfire: implications for emulation of natural disturbance in forest management. Biol Conserv 128:346–357. doi: 10.1016/j.biocon.2005.10.002 CrossRefGoogle Scholar
  14. Buse A, Good JEG (1993) The effects of conifer forest design and management on abundance and diversity of rove beetles (Coleoptera: Staphylinidae): implications for conservation. Biol Conserv 64:67–76. doi: 10.1016/0006-3207(93)90384-D CrossRefGoogle Scholar
  15. Digweed SC, Currie CR, Carcamo HA, Spence JR (1995) Digging out the “digging-in effect” of pitfall traps: influences depletion and disturbance on catches of ground beetles (Coleoptera: Carabidae). Pedobiologia 39:561–576Google Scholar
  16. Fang Y (2011) Asymptotic equivalence between cross-validations and akaike information criteria in mixed-effects models. J Data Sci 9:15–21Google Scholar
  17. Fang S, Liu D, Tian Y, Deng S, Shang X (2013) Tree species composition influences enzyme activities and microbial biomass in the rhizosphere: a rhizobox approach. PLoS One 8:e61461. doi: 10.1371/journal.pone.0061461 PubMedCentralCrossRefPubMedGoogle Scholar
  18. FAO (2010) Global forest resources assessment 2010. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  19. Finch OD (2005) Evaluation of mature conifer plantations as secondary habitat for epigeic forest arthropods (Coleoptera: Carabidae; Araneae). For Ecol Manage 204:21–34. doi: 10.1016/j.foreco.2004.07.071 CrossRefGoogle Scholar
  20. Gold S (2003) The development of European forest resources, 1950 to 2000. A study implemented in the framework of the European Forest Sector Outlook Study (EFSOS). Timber and Forest Discussion Papers, United Nations, GenevaGoogle Scholar
  21. Hammond HEJ, Langor DW, Spence JR (2004) Saproxylic beetles (Coleoptera) using Populus in boreal aspen stands of western Canada: spatiotemporal variation and conservation of assemblages. Can J For Res 34:1–19. doi: 10.1139/X03-192 CrossRefGoogle Scholar
  22. Hanski I, Cambefort Y (1991) Dung beetle ecology. Princeton University Press, PrincetonCrossRefGoogle Scholar
  23. Hart SA, Chen HYH (2008) Fire, logging, and overstory affect understory abundance, diversity, and composition in boreal forest. Ecol Monogr 78:123–140. doi: 10.1890/06-2140.1 CrossRefGoogle Scholar
  24. Hjältén J, Johansson T, Alinvi O, Danell K, Ball PJ, Pettersson R, Gibb H, Hilszczański J (2007) The importance of substrate type, shading and scorching for the attractiveness of dead wood to saproxylic beetles. Basic Appl Ecol 8:364–376. doi: 10.1016/j.baae.2006.08.003 CrossRefGoogle Scholar
  25. Irmler U (1993) Die Kurzflügelkäfer (Staphylinidae) des Bodens schleswigholsteinischer Wälder. Verh Westd Entom Tag 1992:69–77Google Scholar
  26. Irmler U, Gürlich S (2007) What do rove beetles (Coleoptera: Staphylinidae) indicate for site conditions? Faun-Ökol Mitt 8:439–455Google Scholar
  27. Jha DK, Sharma GD, Mishra RR (1992) Soil microbial-population numbers and enzyme-activities in relation to altitude and forest degradation. Soil Biol Biochem 24:761–767. doi: 10.1016/0038-0717(92)90250-2 CrossRefGoogle Scholar
  28. Johansson T, Hjältén J, Hilszczański J, Stenlid J, Ball JP, Alinvi O, Danell K (2007) Variable response of different functional groups of saproxylic beetles to substrate manipulation and forest management: implications for conservation strategies. For Ecol Manage 242:496–510. doi: 10.1016/j.foreco.2007.01.062 CrossRefGoogle Scholar
  29. Johnson DW (1992) Effects of forest management on soil carbon storage. Water Air Soil Poll 64:83–120. doi: 10.1007/Bf00477097 CrossRefGoogle Scholar
  30. Keenan RJ, Kimmins JP (1993) The ecological effects of clear-cutting. Environ Rev 1:121–144. doi: 10.1139/a93-010 CrossRefGoogle Scholar
  31. Koch K (1989) Die Käfer Mitteleuropas. Ökologie. Band 1. Goecke & Evers Verlag, KrefelsGoogle Scholar
  32. Langor DW, Hammond HEJ, Spence JR, Jacobs J, Cobb TP (2008) Saproxylic insect assemblages in Canadian forests: diversity, ecology, and conservation. Can Entomol 140:453–474. doi: 10.4039/n07-LS02 CrossRefGoogle Scholar
  33. Lohse GA (1974) Staphylinidae II (Hypocyphtinae und Aleocharinae) Pselaphidae, Band 5. Die Käfer Mitteleuropas. Goecke & Evers Verlag, KrefeldGoogle Scholar
  34. Magura T, Tóthmérész B, Bordán Z (1997) Comparison of the carabid communities of a zonal oak-hornbeam forest and pine plantations. Acta Zool Acad Sci H 43:173–182Google Scholar
  35. Magura T, Elek Z, Tóthmérész B (2002) Impacts of non-native spruce reforestation on ground beetles. Eur J Soil Biol 38:291–295. doi: 10.1016/S1164-5563(02)01162-7 CrossRefGoogle Scholar
  36. Magura T, Tóthmérész B, Elek Z (2003) Diversity and composition of carabids during a forestry cycle. Biodivers Conserv 12:73–85. doi: 10.1023/A:1021289509500 CrossRefGoogle Scholar
  37. Magura T, Tóthmérész B, Elek Z (2006) Changes in carabid beetle assemblages as Norway spruce plantations age. Community Ecol 7:1–12. doi: 10.1556/Comec.7.2006.1.1 CrossRefGoogle Scholar
  38. Magura T, Nagy D, Tóthmérész B (2013) Rove beetles respond heterogeneously to urbanization. J Insect Conserv 17:715–724. doi: 10.1007/s10841-013-9555-y CrossRefGoogle Scholar
  39. Magura T, Bogyó D, Mizser S, Nagy DD, Tóthmérész B (2015) Recovery of ground-dwelling assemblages during reforestation with native oak depends on the mobility and feeding habits of the species. For Ecol Manage 339:117–126. doi: 10.1016/j.foreco.2014.12.015 CrossRefGoogle Scholar
  40. Martin JEH (1977) Collecting, preparing, and preserving insects, mites, and spiders. Part 1. The Insects and arachnids of Canada. Department of Agriculture Publication, Ottawa Hull, QueGoogle Scholar
  41. Newton AF, Thayer MK, Ashe JS, Chandler DS (2001) Staphylinidae Latreille, 1802. In: Arnett RH Jr, Thomas MC (eds) American Beetles, Volume I: Archostemata, Myxophaga, Adephaga, Polyphaga: Staphyliniformia. CRC Press, Boca Raton, pp 272–418Google Scholar
  42. Niemelä J, Langor D, Spence JR (1993) Effects of clear-cut harvesting on boreal ground-beetle assemblages (Coleoptera, Carabidae) in Western Canada. Conserv Biol 7:551–561. doi: 10.1046/j.1523-1739.1993.07030551.x CrossRefGoogle Scholar
  43. Niemelä J, Koivula M, Kotze DJ (2007) The effects of forestry on carabid beetles (Coleoptera: Carabidae) in boreal forests. J Insect Conserv 11:5–18. doi: 10.1007/s10841-006-9014-0 CrossRefGoogle Scholar
  44. Paillet Y, Bergés L, Hjältén J et al (2010) Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in Europe. Conserv Biol 24:101–112. doi: 10.1111/j.1523-1739.2009.01399.x CrossRefPubMedGoogle Scholar
  45. Paritsis J, Aizen MA (2008) Effects of exotic conifer plantations on the biodiversity of understory plants, epigeal beetles and birds in Nothofagus dombeyi forests. For Ecol Manage 255:1575–1583. doi: 10.1016/j.foreco.2007.11.015 CrossRefGoogle Scholar
  46. Pohl GR, Langor DW, Spence JR (2007) Rove beetles and ground beetles (Coleoptera: Staphylinidae, Carabidae) as indicators of harvest and regeneration practices in western Canadian foothills forests. Biol Conserv 137:294–307. doi: 10.1016/j.biocon.2007.02.011 CrossRefGoogle Scholar
  47. Pohl GR, Langor DW, Klimaszewski J, Work T, Paquin P (2008) Rove beetles (Coleoptera: Staphylinidae) in northern Nearctic forests. Can Entomol 140:415–436. doi: 10.4039/n07-LS03 CrossRefGoogle Scholar
  48. Roberge JM, Stenbacka F (2014) Assemblages of epigaeic beetles and understory vegetation differ between stands of an introduced pine and its native congener in boreal forest. For Ecol Manage 318:239–249. doi: 10.1016/j.foreco.2014.01.026 CrossRefGoogle Scholar
  49. Robson TC, Baker AC, Murray BR (2009) Differences in leaf-litter invertebrate assemblages between radiata pine plantations and neighbouring native eucalypt woodland. Austral Ecol 34:368–376. doi: 10.1111/j.1442-9993.2009.01936.x Google Scholar
  50. Rose A (2001) Räumliche und zeitliche Verteilungsmuster der Kurzflügelkäfer (Coleoptera, Staphylinidae) auf Nordsee-Düneninseln unterschiedlicher Sukzessionsstadien. Archiv Zool Pub 5:1–220Google Scholar
  51. Rudgers JA, Orr S (2009) Non-native grass alters growth of native tree species via leaf and soil microbes. J Ecol 97:247–255. doi: 10.1111/j.1365-2745.2008.01478.x CrossRefGoogle Scholar
  52. Saswati M, Vadakepuram CJ (2010) Influence of leaf litter types on microbial functions and nutrient status of soil: ecological suitability of forest trees for afforestation in tropical laterite wastelands. Soil Biol Biochem 42:2306–2315. doi: 10.1016/j.soilbio.2010.09.007 CrossRefGoogle Scholar
  53. Seevers CH, Herman LH (1978) A generic and tribal revision of the North American Aleocharinae (Coleoptera, Staphylinidae). Fieldiana: Zoology. Field Museum of Natural History, ChicagoGoogle Scholar
  54. Shavrin AV (2009) Impact of industrial pollutions on forest communities of rove beetles (Coleoptera, Staphylinidae) in Shelekhov raion of Irkutsk oblast. Contemp Probl Ecol 2:40–45. doi: 10.1134/S199542550901007x CrossRefGoogle Scholar
  55. Siitonen J (2001) Forest management, coarse woody debris and saproxylic organisms: fennoscandian boreal forests as an example. Ecol Bull 49:11–41. doi: 10.2307/20113262 Google Scholar
  56. Spies TA, Cline SP (1989) Coarse woody debris in forests and plantations of coastal Oregon. In: Maser C, Tarrant RF, Trappe JM, Franklin JF (eds) From the forest to the sea: a story of fallen trees. USDA Forest Service General Technical Report PNW-229, pp 4–23Google Scholar
  57. Stan M (2008) New data on the rove beetle fauna (Coleoptera: Staphylinidae) from Bucareşti and its surroundings. Trav Mus Nat d’Hist Nat 51:369–386Google Scholar
  58. StatSoft Inc. (2010) STATISTICA for Windows (computer program manual).
  59. Stevens MHH, Carson WP (2002) Resource quantity, not resource heterogeneity, maintains plant diversity. Ecol Lett 5:420–426. doi: 10.1046/j.1461-0248.2002.00333.x CrossRefGoogle Scholar
  60. Szujecki A (1966) Relationship between the moisture level in surface horizon of forest soils and the distribution of staphylinids (Staphylinidae, Col.) on an example of forest-district Szeroki Bor in piz primeval forest. Folia Forest Pol Seria A 5–156Google Scholar
  61. Taboada A, Kotze DJ, Tarrega R, Salgadoa JM (2008) Carabids of differently aged reforested pinewoods and a natural pine forest in a historically modified landscape. Basic Appl Ecol 9:161–171. doi: 10.1016/j.baae.2007.01.004 CrossRefGoogle Scholar
  62. Thomas GW (1996) Soil pH and soil acidity. In: Sparks DL et al (eds) Methods of soil analysis. Part 3-chemical methods. Soil Science Society of America and American Society of Agronomy, Madison, pp 475–490Google Scholar
  63. Thompson RN, Humphrey JW, Harmer R, Ferris R (2003) Restoration of native woodland on ancient woodland sites. Forestry Commission Practice Guide, Forestry Commission, EdinburghGoogle Scholar
  64. Török P, Tóthmérész B (2004) A debreceni Nagyerdő növényzeti arculatának vizsgálata. [Botanical survey of the Nagyerdő Forest]. Termvéd Közl 11:107–116Google Scholar
  65. Tóthmérész B (1993) NuCoSA 1.0: number cruncher for community studies and other ecological applications. Abstr Bot 17:283–287Google Scholar
  66. Tóthmérész B, Nagy DD, Mizser S, Bogyó D, Magura T (2014) Edge effects on ground-dwelling beetles (Carabidae and Staphylinidae) in oak forest-forest edge-grassland habitats in Hungary. Eur J Entomol 111:686–691. doi: 10.14411/eje.2014.091 Google Scholar
  67. Vilà M, Espinar JL, Hejda M et al (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708. doi: 10.1111/j.1461-0248.2011.01628.x CrossRefPubMedGoogle Scholar
  68. Wakefield J (2013) Bayesian and frequentist regression methods. Springer series in statistics. Springer, New YorkCrossRefGoogle Scholar
  69. Wisnovszky K (2014) Erdővagyon és erdőgazdálkodás Magyarországon. [Forest resources, sylviculture and timber management in Hungary]. Nemzeti Élelmiszerlánc-biztonsági Hivatal, Erdészeti Igazgatóság, BudapestGoogle Scholar
  70. Zuur A, Ieno EN, Walker N, Saveiliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Dávid D. Nagy
    • 1
  • Tibor Magura
    • 2
  • Zsuzsanna Debnár
    • 1
  • Roland Horváth
    • 2
  • Béla Tóthmérész
    • 1
  1. 1.MTA-DE Biodiversity and Ecosystem Services Research GroupDebrecenHungary
  2. 2.Department of EcologyUniversity of DebrecenDebrecenHungary

Personalised recommendations