Journal of Insect Conservation

, Volume 19, Issue 5, pp 823–836 | Cite as

Butterflies in Portuguese ‘montados’: relationships between climate, land use and life-history traits

  • Jana Slancarova
  • Patricia Garcia-Pereira
  • Zdenek Faltynek Fric
  • Helena Romo
  • Enrique Garcia-Barros


Butterfly life-history features are expected to co-vary along environmental gradients related to changes in the vegetation structure or composition; however the direction and intensity should vary across regions at the large scale. This study focuses on the butterfly communities of Portuguese ‘montados’. Sixteen sites (mostly cork oak fields) were selected, reflecting a succession gradient in the vegetation of the understorey after human intervention. While controlling for vegetation and broader geographical and climate effects, we looked for trends in butterfly species richness and abundance (using generalised linear models) and for trends in species composition (using redundancy analyses). Moreover, we tried to uncover the co-variation between the butterfly life-history characteristics and succession. The results revealed that butterfly species richness was not significantly influenced by any of the considered variables. In contrast, abundance depended on geographic and oceanity–continentality gradients as it increased towards the East and with more marked temperature annual ranges and less dry summer conditions. Species composition was influenced by temperature ranges and by shrub coverage. There was no strong evidence in favour of fast–slow or generalist–specialist syndromes co-varying along human imposed environmental gradients. However, after controlling for the broad scale variables (geography and climate) shrub cover emerged as a relevant factor. This reinforces the idea that late successional stages are not optimal for butterfly communities. It implies the importance of the extensive methods of traditional management and the negative effects of long-term abandonment.


Oceanity–continentality gradient Climate Quercus suber Lepidoptera Management Mediterranean Semi-natural habitat 



We would like to thank to Sonia Malverio for her work on the identification of the plant species as well as for her help in the field and to Matthew Sweney for proofreading the English. This research was funded by the Portuguese Foundation for Science and Technology (FCT), PRAXIS XXI no. 9101/96.

Supplementary material

10841_2015_9801_MOESM1_ESM.docx (49 kb)
List of species and life-history traits used in the analyses of data from southern Portugal. Abbreviations as follows: FL1 (Flying period): February–March, FL2: April, FL3: June, FL4: July–September, FL5: October and onward; AL1 (Altitudinal range): 0–500 m, AL2: 501–2000 m, AL3: over 2001 m; Range type: EUS – Eurosiberian, EUR – European, GLOB – global, HOL – Holarctic, MED – Mediterranean (DOCX 48 kb)
10841_2015_9801_MOESM2_ESM.docx (14 kb)
Reference list to the sources of information on the life-history traits used in the analyses of data from the butterflies in southern Portugal (DOCX 13 kb)
10841_2015_9801_MOESM3_ESM.docx (18 kb)
Reference list to the sources of phylogenetic information (DOCX 18 kb)


  1. Anonymous (2000) Natural resources CD-rom. CORINE Land Cover. Technical guide. Accessed 20 March 2014
  2. Araujo MB, Garcia-Pereira P (2003) Cartografia da diversidade de borboletas em Portugal Continental. In: Maravalhas E (ed) As borboletas de Portugal. Porto, Multiponto, pp 121–128Google Scholar
  3. Atkinson D (1994) Temperature and organism size—a biological law for ectotherms? Adv Ecol Res 25:1–58. doi: 10.1016/S0065-2504(08)60212-3 CrossRefGoogle Scholar
  4. Bartonova A, Benes J, Konvicka M (2014) Generalist–specialist continuum and life history traits in Central European butterflies—are we missing a part of the picture? Eur J Entomol 111:543–553. doi: 10.14411/eje.2014.060 Google Scholar
  5. Blondel J, Aronson J (1999) Biology and wildlife in the Mediterranean region. Oxford University Press, OxfordGoogle Scholar
  6. Boggs CL, Watt WB, Ehrlich PR (2003) Butterflies: ecology and evolution taking flight. University of Chicago Press, ChicagoGoogle Scholar
  7. Borschig C, Klein AM, von Wehrden H, Krauss J (2013) Traits of butterfly communities change from specialist to generalist characteristics with increasing land-use intensity. Basic Appl Ecol 14:547–554. doi: 10.1016/j.baae.2013.09.002 CrossRefGoogle Scholar
  8. Brown VK (1985) Insect herbivores and plant succession. Oikos 44:17–22. doi: 10.2307/3544037 CrossRefGoogle Scholar
  9. Brown JH, Kodric-Brown A (1977) Turnover rates in insular biogeography—effect of immigration on extinction. Ecology 58:445–449. doi: 10.2307/1935620 CrossRefGoogle Scholar
  10. Brown VK, Southwood TRE (1987) Secondary succession: patterns and strategies. Colonization, succession and stability. Blackwell, OxfordGoogle Scholar
  11. Bugalho MN, Lecomte X, Goncalves M, Caldeira MC, Branco M (2011) Establishing grazing and grazing-excluded patches increases plant and invertebrate diversity in a Mediterranean oak woodland. For Ecol Manag 261:2133–2139. doi: 10.1016/j.foreco.2011.03.009 CrossRefGoogle Scholar
  12. Carnicer J, Stefanescu C, Vila R, Dinca V, Font X, Peñuelas J (2013) A unified framework for diversity gradients: the adaptive trait continuum. Glob Ecol Biogeogr 22:6–18. doi: 10.1111/j.1466-8238.2012.00762.x CrossRefGoogle Scholar
  13. Costa A, Pereira H, Madeira M (2009) Landscape dynamics in endangered cork oak woodlands in Southwestern Portugal (1958–2005). Agrofor Syst 77:83–96. doi: 10.1007/s10457-009-9212-3 CrossRefGoogle Scholar
  14. Dapporto L, Dennis RLH (2013) The generalist–specialist continuum: testing predictions for distribution and trends in British butterflies. Biol Conserv 157:229–236. doi: 10.1016/j.biocon.2012.09.016 CrossRefGoogle Scholar
  15. Dennis RLH, Hodgson JG, Grenyer R, Shreeve TG, Roy DB (2004) Host plants and butterfly biology. Do host-plant strategies drive butterfly status? Ecol Entomol 29:12–26. doi: 10.1111/j.1365-2311.2004.00572.x CrossRefGoogle Scholar
  16. Dennis RH, Shreeve T, Arnold H, Roy D (2005) Does diet breadth control herbivorous insect distribution size? Life history and resource outlets for specialist butterflies. J Insect Conserv 9:187–200. doi: 10.1007/s10841-005-5660-x CrossRefGoogle Scholar
  17. Dennis RLH, Hardy PB, Shreeve TG (2008) The importance of resource databanks for conserving insects: a butterfly biology perspective. J Insect Conserv 12:711–719. doi: 10.1007/s10841-007-9112-7 CrossRefGoogle Scholar
  18. Dennis RLH, Dapporto L, Fattorini S, Cook LM (2011) The generalism-specialism debate: the role of generalists in the life and death of species. Biol J Linnean Soc 104:725–737. doi: 10.1111/j.1095-8312.2011.01789.x CrossRefGoogle Scholar
  19. DGA (1998) Atlas do Ambiente Digital. Direcção Geral do Ambiente, Portugal. Accessed 15 April 2000
  20. DGF (1993) Distribuição da floresta em Portugal Continental. Direcção General das Florestas, LisboaGoogle Scholar
  21. Dover JW, Rescia A, Fungarino S, Fairburn J, Carey P, Lunt P, Arnot C, Dennis RLH, Dover CJ (2011) Land-use, environment, and their impact on butterfly populations in a mountainous pastoral landscape: species richness and family-level abundance. J Insect Conserv 15:523–538. doi: 10.1007/s10841-010-9331-1 CrossRefGoogle Scholar
  22. Farris E, Filigheddu R, Deiana P, Farris GA, Garau G (2010) Short-term effects on sheep pastureland due to grazing abandonment in a Western Mediterranean island ecosystem: A multidisciplinary approach. J Nat Conserv 18:258–267. doi: 10.1016/j.jnc.2009.11.003 CrossRefGoogle Scholar
  23. Gaillard JM, Pontier D, Allaine D, Lebreton JD, Trouvilliez J, Clobert J (1989) An analysis of demographic tactics in birds and mammals. Oikos 56:59–76. doi: 10.2307/3566088 CrossRefGoogle Scholar
  24. Garcia-Barros E, Munguira ML, Cano JM, Romo H, Garcia-Pereira P, Maravalhas E (2004) Atlas of the butterflies of the Iberian Peninsula and Balearic Islands (Lepidoptera: Papilionoidea & Hesperioidea), vol 11. Monografias S.E.A, ZaragozaGoogle Scholar
  25. Garcia-Pereira P, Garcia-Barros E, Munguira ML (2003) Patrones de distribución de la mariposas diurnas en Portugal (Lepidoptera: Papilionoidea, Hesperioidea, Zygaenidae). Graellsia 59:259–271. doi: 10.3989/graellsia.2003.v59.i2-3.245 CrossRefGoogle Scholar
  26. Hijmans RJ, Camero S, Parra J (2005) WorldClim-Global Climate Data. Accessed 5 March 2014
  27. Honrado J (2003) A vegetação natural de Portugal continental. In: Maravalhas E (ed) As borboletas de Portugal. Porto, Multiponto, pp 144–166Google Scholar
  28. Hortal J, Garcia-Pereira P, Garcia-Barros E (2004) Butterfly species richness in mainland Portugal: predictive models of geographic distribution patterns. Ecography 27:68–82. doi: 10.1111/j.0906-7590.2004.03635.x CrossRefGoogle Scholar
  29. Kadlec T, Kotela M, Novak I, Konvicka M, Jarosik V (2009) Effect of land use and climate on the diversity of moth guilds with different habitat specialization. Community Ecol 10:152–158. doi: 10.1556/ComEc.10.2009.2.3 CrossRefGoogle Scholar
  30. Karlsson B, Van Dyck H (2005) Does habitat fragmentation affect temperature-related life-history traits? A laboratory test with a woodland butterfly. Proc R Soc Lond [Biol] 272:1257–1263. doi: 10.1098/rspb.2005.3074 CrossRefGoogle Scholar
  31. Karlsson B, Wiklund C (2005) Butterfly life history and temperature adaptations; dry open habitats select for increased fecundity and longevity. J Anim Ecol 74:99–104. doi: 10.1111/j.1365-2656.2004.00902.x CrossRefGoogle Scholar
  32. Krauss J, Steffan-Dewenter I, Tscharntke T (2003) Local species immigration, extinction, and turnover of butterflies in relation to habitat area and habitat isolation. Oecologia 137:591–602. doi: 10.1007/s00442-003-1353-x CrossRefPubMedGoogle Scholar
  33. Magurran AE (2004) Measuring ecological diversity. Blackwell Publishing, OxfordGoogle Scholar
  34. Malveiro SM (2001) Montados de sobro e azinho. Estágio de licenciaturação, Universidade de Lisboa, Lisboa, Contribuiçã para o estudo das comudades florísticas a sul do TejoGoogle Scholar
  35. Maravalhas E (2003) As borboletas de Portugal. The butterflies of Portugal. Apollo Books, StenstrupGoogle Scholar
  36. Menendez R, Gonzalez-Megias A, Collingham Y, Fox R, Roy DB, Ohlemuller R, Thomas CD (2007) Direct and indirect effects of climate and habitat factors on butterfly diversity. Ecology 88:605–611. doi: 10.1890/06-0539 CrossRefPubMedGoogle Scholar
  37. Moreira F, Russo D (2007) Modelling the impact of agricultural abandonment and wildfires on vertebrate diversity in Mediterranean Europe. Landsc Ecol 22:1461–1476. doi: 10.1007/s10980-007-9125-3 CrossRefGoogle Scholar
  38. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. doi: 10.1038/35002501 CrossRefPubMedGoogle Scholar
  39. Nylin S (2009) Gradients in butterfly biology. In: Settele J, Shreeve T, Konvicka M, Van Dyck H (eds) Ecology of butterflies in Europe. Cambrige University Press, Cambridge, pp 198–216Google Scholar
  40. Ockinger E, Schweiger O, Crist TO, Debinski DM, Krauss J, Kuussaari M, Petersen JD, Poyry J, Settele J, Summerville KS, Bommarco R (2010) Life-history traits predict species responses to habitat area and isolation: a cross-continental synthesis. Ecol Lett 13:969–979. doi: 10.1111/j.1461-0248.2010.01487.x PubMedGoogle Scholar
  41. Oliveira G (1995) Autoecologia de Sobreiro (Quercus suber L.) em montados portugueses. Dissertation, Universidade de LisboaGoogle Scholar
  42. Pausas JC, Llovet J, Rodrigo A, Vallejo R (2008) Are wildfires a disaster in the Mediterranean basin? A review. Int J Wildland Fire 17:713–723. doi: 10.1071/wf07151 CrossRefGoogle Scholar
  43. Pianka ER (1970) On r- and K- selection. Am Nat 104:592–597. doi: 10.1086/282697 CrossRefGoogle Scholar
  44. Pinto-Correia T, Ribeiro N, Sa-Sousa P (2011) Introducing the montado, the cork and holm oak agroforestry system of Southern Portugal. Agrofor Syst 82:99–104. doi: 10.1007/s10457-011-9388-1 CrossRefGoogle Scholar
  45. Pollard E, Yates TJ (1993) Monitoring butterflies for ecology and conservation. Chapman & Hall, LondonGoogle Scholar
  46. Porto M, Correia O, Beja P (2011) Long-term consequences of mechanical fuel management for the conservation of Mediterranean forest herb communities. Biodivers Conserv 20:2669–2691. doi: 10.1007/s10531-011-0098-9 CrossRefGoogle Scholar
  47. Price PW (2002) Resource-driven terrestrial interaction webs. Ecol Res 17:241–247Google Scholar
  48. Ramirez JA, Diaz M (2008) The role of temporal shrub encroachment for the maintenance of Spanish holm oak Quercus ilex dehesas. For Ecol Manage 255:1976–1983. doi: 10.1016/j.foreco.2007.12.019 CrossRefGoogle Scholar
  49. Ribeiro JR (1993) Os Montados como sistemas de utilização múltipla. Informação Florestal 1:13–16Google Scholar
  50. Rissler LJ, Apodaca JJ (2007) Adding more ecology into species delimitation: ecological niche models and phylogeography help define cryptic species in the black salamander (Aneides flavipunctatus). Syst Biol 56:924–942. doi: 10.1080/10635150701703063 CrossRefPubMedGoogle Scholar
  51. Romo H, Garcia-Barros E (2010) Biogeographic regions of the Iberian Peninsula: butterflies as biogeographical indicators. J Zool 282:180–190. doi: 10.1111/j.1469-7998.2010.00730.x CrossRefGoogle Scholar
  52. Sanford MP (2002) Effects of successional old fields on butterfly richness and abundance in agricultural landscapes. Gt Lakes Entomol 35:193–207Google Scholar
  53. Santana J, Porto M, Reino L, Beja P (2011) Long-term understory recovery after mechanical fuel reduction in Mediterranean cork oak forests. For Ecol Manage 261:447–459. doi: 10.1016/j.foreco.2010.10.030 CrossRefGoogle Scholar
  54. Settele J, Dover J, Dolek M, Konvicka M (2009) Butterflies of European ecosystems: impact of land use and options for conservation management. In: Settele J, Shreeve T, Konvicka M, Van Dyck H (eds) Ecology of butterflies in Europe. Cambrige University Press, Cambridge, pp 353–370Google Scholar
  55. Shapiro AM (1975) The temporal component of butterfly species diversity. Ecology and evolution of communities. Harvard University Press, CambridgeGoogle Scholar
  56. Sibly RM, Atkinson D (1994) How rearing temperature affects optimal adult size in ectotherms. Funct Ecol 8:486–493. doi: 10.2307/2390073 CrossRefGoogle Scholar
  57. Stefanescu C, Peñuelas J, Filella I (2005) Butterflies highlight the conservation value of hay meadows highly threatened by land-use changes in a protected Mediterranean area. Biol Conserv 126:234–246. doi: 10.1016/j.biocon.2005.05.010 CrossRefGoogle Scholar
  58. Stefanescu C, Peñuelas J, Filella I (2009) Rapid changes in butterfly communities following the abandonment of grasslands: a case study. Insect Conserv Diver 2:261–269. doi: 10.1111/j.1752-4598.2009.00063.x CrossRefGoogle Scholar
  59. Stefanescu C, Carnicer J, Peñuelas J (2011) Determinants of species richness in generalist and specialist Mediterranean butterflies: the negative synergistic forces of climate and habitat change. Ecography 34:353–363. doi: 10.1111/j.1600-0587.2010.06264.x CrossRefGoogle Scholar
  60. Stefanescu C, Paramo F, Akesson S, Alarcon M, Avila A, Brereton T, Carnicer J, Cassar LF, Fox R, Heliola J, Hill JK, Hirneisen N, Kjellen N, Kuhn E, Kuussaari M, Leskinen M, Liechti F, Musche M, Regan EC, Reynolds DR, Roy DB, Ryrholm N, Schmaljohann H, Settele J, Thomas CD, van Swaay C, Chapman JW (2013) Multi-generational long-distance migration of insects: studying the painted lady butterfly in the Western Palaearctic. Ecography 36:474–486. doi: 10.1111/j.1600-0587.2012.07738.x CrossRefGoogle Scholar
  61. Steffan-Dewenter I, Tscharntke T (1997) Early succession of butterfly and plant communities on set-aside fields. Oecologia 109:294–302. doi: 10.1007/s004420050087 CrossRefGoogle Scholar
  62. The R Core Team (2012) R version 2.15.2. Accessed 5 Nov 2012
  63. Ter Braak CJF, Smilauer P (2012) Canoco 5, Windows release (5.00). Accessed 5 Feb 2014
  64. Tolman T, Lewington R (2009) Collins butterfly guide: the most complete guide to the butterflies of britain and Europe. HarperCollins, LondonGoogle Scholar
  65. Verdasca MJ, Leitao AS, Santana J, Porto M, Dias S, Beja P (2012) Forest fuel management as a conservation tool for early successional species under agricultural abandonment: The case of Mediterranean butterflies. Biol Conserv 146:14–23. doi: 10.1016/j.biocon.2011.10.031 CrossRefGoogle Scholar
  66. WallisDeVries MF, Baxter W, Van Vliet AJH (2011) Beyond climate envelopes: effects of weather on regional population trends in butterflies. Oecologia 167:559–571. doi: 10.1007/s00442-011-2007-z PubMedCentralCrossRefPubMedGoogle Scholar
  67. Wiklund C (1984) Egg-laying patterns in butterflies in relation to their phenology and the visual apparency and abundance of their host plants. Oecologia 63:23–29. doi: 10.1007/BF00379780 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jana Slancarova
    • 1
    • 2
  • Patricia Garcia-Pereira
    • 3
  • Zdenek Faltynek Fric
    • 2
  • Helena Romo
    • 4
  • Enrique Garcia-Barros
    • 4
  1. 1.Department of Zoology, Faculty of ScienceUniversity of South Bohemia in Ceske BudejoviceCeske BudejoviceCzech Republic
  2. 2.Institute of EntomologyBiology Centre CAS v. v. i.Ceske BudejoviceCzech Republic
  3. 3.TAGIS – Centro de Conservação de Borboletas de Portugal, Museu Nacional de História Natural e da CiénciaUniversidade de LisboaLisbonPortugal
  4. 4.Department of BiologyUniversidad Autónoma de MadridMadridSpain

Personalised recommendations