Journal of Insect Conservation

, Volume 19, Issue 3, pp 601–606 | Cite as

Delayed effects of fire and logging on cicada nymph abundance



The degradation of the root system after fire and logging entails alteration of belowground biodiversity. Nymphs of Cicada orni feed on the sap of roots and can be indicators of the fate of the root-feeding fauna. I studied the cicada population of a pine forest which was affected in 2010 by a wildfire that burned all the vegetation aboveground and was subsequently logged. I hypothesized that the effect of these disturbances on the forest root system would negatively affect nymph abundance and length, due to the consequent food limitation. I used a BACI (before-after control-impact) design approach, assuming that root degradation, taking place around 1 year after the death of aerial structures, was the main impact on cicada nymphs. Cicada exuviae attached to vegetation were collected as a proxy for nymphs. From 2011 to 2012, the relative abundance of exuviae increased from 12.6 to 23.3 exuviae/100 m2 in the control area, but decreased from 18.0 to 3.6 exuviae/100 m2 in the burned area, probably as a consequence of progressive root degradation and/or to the absence of 2-year-old nymphs due to the destruction of eggs by fire. However, interannual trends in exuviae length of males and females cicadas were not significantly different between areas. This population crash illustrates a previously undescribed time lag in the response of belowground animals to fire and logging which may have consequences for the ecosystem as a whole.


Cicada orni Pinus halepensis Exuviae BACI approach Root degradation Belowground survival 



Special thanks are due to Roger Puig, Carles Tobella, Dolors Verdaguer, Sílvia Terradas and Ana Meneses for their help during the study. This manuscript benefited from the suggestions of Michel Boulard, Annie Desrochers, Marissa Molinas, Natàlia Adell, Núria Roura-Pascual, Francis Boyle and two anonymous referees. Study partly supported by CGL2014-54094-R.


  1. Artman VL, Sutherland EK, Downhower JF (2001) Prescribed burning to restore mixed-oak communities in southern Ohio: effects on breeding bird populations. Conserv Biol 15:1423–1434CrossRefGoogle Scholar
  2. Bormann FH (1961) Intraspecific root grafting and the survival of eastern white pine stumps. Forest Sci 7:247–256Google Scholar
  3. Boulard M (1990) Contributions à l’entomologie genérale et apliquée. 2. Cicadaires (Homoptéres Auchenorhynques). Premiére partie: cicadoidea. EPHE. Travaux du Laboratoire Biologie et Evolution des Insectes Hemipteroidea 3:55–245Google Scholar
  4. Boulard M, Mondon B (1995) Vies et mémoires de cigales. Editions de l’Equinoxe, BarbentaneGoogle Scholar
  5. Callaham MA, Whiles MR, Blair JM (2002) Annual fire, mowing and fertilization effects on two cicada species (Homoptera: Cicadidae) in tallgrass prairie. Am Midland Nat 148:90–101CrossRefGoogle Scholar
  6. Callaham MA, Blair JM, Todd TC, Kitchen DJ, Whiles MR (2003) Macroinvertebrates in North American tallgrass prairie soils: effects of fire, mowing, and fertilization on density and biomass. Soil Biol Biochem 35:1079–1093CrossRefGoogle Scholar
  7. Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia 143:1–10PubMedCrossRefGoogle Scholar
  8. Cruz-Sanchez MA, Asis JD, Gayubo SF, Tormos J, Gonzalez JA (2011) The effects of wildfire on Spheciformes wasp community structure: the importance of local habitat conditions. J Insect Conserv 15:487–503CrossRefGoogle Scholar
  9. De Deyn GB, Van der Putten WH (2005) Linking aboveground and belowground diversity. Trends Ecol Evol 20:625–633PubMedCrossRefGoogle Scholar
  10. Fitter AH, Gilligan CA, Hollingworth K, Kleczkowski A, Twyman RM, Pitchford JW, Programme NSB (2005) Biodiversity and ecosystem function in soil. Funct Ecol 19:369–377CrossRefGoogle Scholar
  11. Fraser EC, Lieffers VJ, Landhausser SM (2007) The persistence and function of living roots on lodgepole pine snags and stumps grafted to living trees. Ann Forest Sci 64:31–36CrossRefGoogle Scholar
  12. Hossack BR, Lowe WH, Corn PS (2013) Rapid increases and time-lagged declines in amphibian occupancy after wildfire. Conserv Biol 27:219–228PubMedCrossRefGoogle Scholar
  13. Johnson SN, Murray PJ (eds) (2009) Root feeders: an ecosystem perspective. CABI, WallingfordGoogle Scholar
  14. Karban R, Black CA, Weinbaum SA (2000) How 17-year cicadas keep track of time. Ecol Lett 3:253–256CrossRefGoogle Scholar
  15. Koricheva J, Larsson S, Haukioja E (1998) Insect performance on experimentally stressed woody plants: a meta-analysis. Annu Rev Entomol 43:195–216PubMedCrossRefGoogle Scholar
  16. Lee YF, Lin YH, Wu SH (2010) Spatiotemporal variation in cicada diversity and distribution, and tree use by exuviating nymphs, in East Asian tropical reef-karst forests and forestry plantations. Ann Entomol Soc Am 103:216–226CrossRefGoogle Scholar
  17. Mokany K, Raison RJ, Prokushkin AS (2006) Critical analysis of root: shoot ratios in terrestrial biomes. Global Change Biol 12:84–96CrossRefGoogle Scholar
  18. Onem (2012) Identifier les exuvies de cigales. Accessed 12 November 2012
  19. Patterson IJ, Massei G, Genov P (1997) The density of cicadas Cicada orni in Mediterranean coastal habitats. Ital J Zool 64:141–146CrossRefGoogle Scholar
  20. Paula S, Pausas JG (2011) Root traits explain different foraging strategies between resprouting life histories. Oecologia 165:321–331PubMedCrossRefGoogle Scholar
  21. Pausas JG, Keeley JE (2009) A burning story: the role of fire in the history of life. Bioscience 59:593–601CrossRefGoogle Scholar
  22. Pons P, Henry P-Y, Gargallo G, Prodon R, Lebreton J-D (2003) Local survival after fire in Mediterranean shrublands: combining capture-recapture data over several bird species. Popul Ecol 45:187–196CrossRefGoogle Scholar
  23. Puissant S (2006) Contribution a la connaissance des cigales de France: geonemie et écologie des populations (Hemiptera, Cicadidae). Ascete, Bédeilhac et AynatGoogle Scholar
  24. Russell EM, Rowley I (1993) Demography of the cooperatively breeding splendid fairy-wren, Malurus splendens (Maluridae). Aust J Zool 41:475–505CrossRefGoogle Scholar
  25. San-Miguel-Ayanz J, Rodrigues M, Santos de Oliveira S, Kemper-Pacheco C, Moreira F, Duguy B, Camia A (2012) Land cover change and fire regime in the European Mediterranean region. In: Moreira F, Arianoutsou M, Corona P, De la Heras J (eds) Post-fire management and restoration of Southern European forests. Springer, DordrechtGoogle Scholar
  26. Sanz-Aguilar A, Anadón JD, Gimenez A, Ballestar R, Graciá E, Oro D (2011) Coexisting with fire: the case of the terrestrial tortoise Testudo graeca in mediterranean shrublands. Biol Conserv 144:1040–1049CrossRefGoogle Scholar
  27. Smith DM, Kelly JF, Finch DM (2006) Cicada emergence in Southwestern riparian forest: influences of wildfire and vegetation composition. Ecol Appl 16:1608–1618PubMedCrossRefGoogle Scholar
  28. Sueur J, Puissant S, Simoes P, Seabra S, Boulard M, Quartau JA (2004) Cicadas from Portugal: revised list of species with eco-ethological data (Hemiptera: Cicadidae). Insect Syst Evol 35:177–187CrossRefGoogle Scholar
  29. Swengel AB (2001) A literature review of insect responses to fire, compared to other conservation managements of open habitat. Biodiv Conserv 10:1141–1169CrossRefGoogle Scholar
  30. Williams KS, Simon C (1995) The ecology, behavior, and evolution of periodical cicadas. Annu Rev Entomol 40:269–295CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Departament de Ciències AmbientalsUniversitat de GironaGironaSpain

Personalised recommendations