Advertisement

Journal of Insect Conservation

, Volume 18, Issue 3, pp 479–495 | Cite as

Decreasing negative impacts of harvesting over insect communities using variable retention in southern Patagonian forests

  • María Vanessa Lencinas
  • Guillermo Martínez Pastur
  • Emilce Gallo
  • Juan Manuel Cellini
ORIGINAL PAPER

Abstract

Variable retention is an alternative silvicultural approach to timber forest management, which consist in a regeneration treatment with different degrees and patterns of stand retention. It has been proposed to mitigate harmful effects of harvesting, but effectiveness in insect conservation remains unknown in southern Patagonian Nothofagus pumilio forests. Here, the objectives were to: (1) define a baseline of insect diversity in old-growth forests along a site quality gradient (high, medium and low, associated to the forest productivity of each site); (2) evaluate stands with different retention treatments [aggregated (AR) surrounded by dispersed (DR) retention, and aggregated retention surrounded by clear-cut (CC)] and to compare with old-growth unmanaged forests (OGF); and (3) assess temporal changes during the first 4 years after harvesting (YAH). In a long term forest research plot, mobile epigean insect richness and relative abundance were characterized and classified in seven response type groups, using a wide spectrum sampling set. Data analyses included parametric and permutational ANOVAs, multivariate classification and ordinations. There were found 79 species before harvesting, and that richness was not related to site quality. After harvesting, 84 new species were added considering all treatments along the first four sampled YAH, of which 65 % were added to OGF, while in harvested sites richness and abundance directly diminished with retention degree (OGF > AR > DR > CC) due to incoming species cannot compensate the lost of them. However, fluctuations in diversity were observed along the YAH. Therefore, harvesting reduces insect richness in N. pumilio forests independently of the treatment, but the original insect assemblage significantly changes due to loss of sensitive species and introduction of others from surrounding environments. Despite this, inclusion of aggregates greatly diminished harvesting impacts because insect assemblage is favoured when structural complexity is preserved, conserving richness and abundance at similar levels than in old-growth forests. However, more studies are necessary to evaluate effects of different aggregate size, shape and distribution into harvested forests, as well as their fragmentation and connectivity at landscape level.

Keywords

Aggregated retention Dispersed retention Biodiversity conservation Insect diversity 

Notes

Acknowledgments

The authors gratefully thank to the Centro Austral de Investigaciones Científicas, Servicios Forestales Consultancy, Los Castores sawmill, Lenga Patagonia S.A. and Dirección de BosquesSecretaría de Ambiente y Desarrollo Sustentable of Argentina (PIARFON BIRF 4085-AR) for their support during the realization of this work. Also we especially thank to Dr. Sergio Roig-Juñent (Curculionida and Carabida), Dr. Gustavo Flores (Perymilopida), Dr. Andrew Schmidt (Scarabeida) for their collaboration in species identification, and to students who participate in the field work for their help, curiosity and willingness.

References

  1. Arnott JT, Beese WJ (1997) Alternatives to clearcutting in British Columbia coastal montane forests. For Chron 73:670–678CrossRefGoogle Scholar
  2. Aubry KB, Halpern CB, Maguire DA (2004) Ecological effects of variable-retention harvests in the north-western United States: the DEMO study. For Snow Lands Res 78:119–137Google Scholar
  3. Baker SC (2006) A comparison of litter beetle assemblages (Coleoptera) in mature and recently clearfelled Eucalyptus obliqua forest. Aust J Entom 45:130–136CrossRefGoogle Scholar
  4. Baker SC, Richardson AMM, Seeman OD, Barmuta LA (2004) Does clearfell, burn and sow silviculture mimic the effect of wildfire? A field study and review using litter beetles. For Ecol Manag 199:433–448CrossRefGoogle Scholar
  5. Baker SC, Grove SJ, Forster L, Bonham KJ, Bashford D (2009) Short-term responses of ground-active beetles to alternative silvicultural systems in the Warra Silvicultural Systems Trial, Tasmania, Australia. For Ecol Manag 258:444–459CrossRefGoogle Scholar
  6. Baker SC, Spies TA, Wardlaw TJ, Balmer J, Franklin JF, Jordan GJ (2013) The harvested side of edges: effect of retained forests on the re-establishment of biodiversity in adjacent harvested areas. For Ecol Manag 302:107–121CrossRefGoogle Scholar
  7. Bashford R, Taylor R, Driessen M, Doran N, Richardson A (2001) Research on invertebrate assemblages at the Warra LTER site. Tasforests 13:109–118Google Scholar
  8. Basset Y (1999) Diversity and abundance of insect herbivores collected on Castanopsis acuminatissima (Fagaceae) in New Guinea: relationships with leaf production and surrounding vegetation. Eur J Entomol 96:381–391Google Scholar
  9. Bava J, López Bernal PM (2005) Cortas de selección en grupo en bosques de lenga. IDIA-XXI 5:39–42Google Scholar
  10. Chen J, Franklin JF, Spies TA (1993) Contrasting microclimates among clear-cut, edge, and interior of old-growth Douglas-fir forest. Agric For Meteorol 63:219–237CrossRefGoogle Scholar
  11. Chen J, Franklin JF, Spies TA (1995) Growing season microclimatic gradients from clear-cut edges into old-growth Douglas-fir forests. Ecol Appl 5:74–86CrossRefGoogle Scholar
  12. Collantes MB, Anchorena J (1993) Las malezas exóticas y plantas escapadas de cultivo en la región de estepa de Tierra del Fuego. Parodiana 8:213–217Google Scholar
  13. Colwell RK (2005) EstimateS: statistical estimation of species richness and shared species from samples. UConn. Version 7.5. http://viceroy.eeb.uconn.edu/estimates
  14. Coscarón S, Wygodzinsky P (1962) Simuliidae (Diptera, Insecta) de Tierra del Fuego, Patagonia e Islas Juan Fernández. Acta Zool Lilloana XVII:281–333Google Scholar
  15. De Somviele B, Lyytikäinen-Saarenmaa P, Niemelä P (2004) Sawfly (Hym., Diprionidae) outbreaks on Scots pine: effect of stand structure, site quality and relative tree position on defoliation intensity. For Ecol Manag 194:305–317CrossRefGoogle Scholar
  16. Deferrari G, Camilion C, Martínez Pastur G, Peri P (2001) Changes in Nothofagus pumilio forest biodiversity during the forest management cycle: 2. Birds. Biodiv Conserv 10:2093–2108CrossRefGoogle Scholar
  17. Dimitri M (1972) La región de los bosques andino patagónicos. Sinopsis general. INTA, Buenos AiresGoogle Scholar
  18. Ducid MG, Murace M, Cellini JM (2005) Diversidad fúngica en el filoplano de Osmorhiza spp. relacionado con el sistema de regeneración empleado en bosques de Nothofagus pumilio en Tierra del Fuego, Argentina. Bosque 26(1):33–42CrossRefGoogle Scholar
  19. Ferreyra M, Cingolani A, Ezcurra C, Bran D (1998) High-Andean vegetation and environmental gradients in northwestern Patagonia, Argentina. J Veg Sci 9:307–316CrossRefGoogle Scholar
  20. Franklin J, Berg D, Thornburgh D, Tappeiner J (1997) Alternative silvicultural approaches to timber harvesting: variable retention harvest systems. In: Kohm K, Franklin J (eds) Creating a forestry for the 21st century. Island Press, New York, pp 111–140Google Scholar
  21. Gea G, Martínez Pastur G, Cellini JM, Lencinas MV (2004) Forty years of silvicultural management in southern Nothofagus pumilio (Poepp. et Endl.) Krasser primary forests. For Ecol Manag 201:335–347CrossRefGoogle Scholar
  22. Gerlach J, Samways M, Pryke J (2013) Terrestrial invertebrates as bioindicators: and overview of available taxonomic groups. J Insect Conserv 17:831–850CrossRefGoogle Scholar
  23. González M, Donoso Zegers C, Ovalle P, Martínez Pastur G (2006) Nothofagus pumilio (Poepp. et Endl) Krasser - lenga, roble blanco, leñar, roble de Tierra del Fuego - Familia: Fagaceae. In: Donoso Zegers C (ed) Las Especies arbóreas de los Bosques Templados de Chile y Argentina: Autoecología. Marisa Cúneo, Valdivia, pp 486–500Google Scholar
  24. Grove SJ (2010) Do wildlife habitat strips act as refuges for mature-forest carabid beetle assemblages? A case-study in Tasmanian wet eucalypt forest, Australia. For Ecol Manag 259:496–504CrossRefGoogle Scholar
  25. Grove SJ, Forster L (2011) A decade of change in the saproxylic beetle fauna of eucalypt logs in the Warra long-term log-decay experiment, Tasmania. 1. Description of the fauna and seasonality patterns. Biodiv Conserv 20:2149–2165CrossRefGoogle Scholar
  26. Gustafsson L, Kouki J, Sverdrup-Thygeson A (2010) Tree retention as a conservation measure in clear-cut forests of northern Europe: a review of ecological consequences. Scand J For Res 25:295–308CrossRefGoogle Scholar
  27. Gustafsson L, Baker SC, Bauhus J, Beese WJ, Brodie A, Kouki J, Lindenmayer DB, Lõhmus A, Martínez Pastur G, Messier C, Neyland M, Palik B, Sverdrup-Thygeson A, Volney WJA, Wayne A, Franklin JF (2012) Retention forestry to maintain multifunctional forests: a world perspectiva. BioScience 62:633–645Google Scholar
  28. Guzmán L, Atalah A, Venegas C (1985–86) Composición específica y estructura de la comunidad de aves de verano en el complejo de la Tundra Magellánica. An Inst Pat, Serie Cs Nat 16:75–86Google Scholar
  29. Hammond HEJ, Langor DW, Spence JR (2004) Saproxylic beetles (Coleoptera) using Populus in boreal aspen stands of western Canada: spatiotemporal variation and conservation of assemblages. Can J For Res 34(1):1–19CrossRefGoogle Scholar
  30. Heliölä J, Koivula M, Niemelä J (2001) Distribution of Carabid beetles (Coleoptera, Carabidae) across a boreal forest-clearcut ecotone. Conserv Biol 15(2):370–377CrossRefGoogle Scholar
  31. Hickey JE, Neyland MG, Bassett OD (2001) Rationale and design for the Warra silvicultural systems trial in wet Eucalyptus oblique forests in Tasmania. Tasforests 13(2):155–182Google Scholar
  32. Hill MO (1979) DECORANA. A Fortran program for detrended correspondence analysis and reciprocal averaging. Publication of Section of Ecology and Systematics. Cornell Univ. Ithaca, New YorkGoogle Scholar
  33. Hillebrand H (2004) On the generality of the latitudinal diversity gradient. Am Nat 163:192–211PubMedCrossRefGoogle Scholar
  34. Huber C, Baumgarten M (2005) Early effects of forest regeneration with selective and small scale clear-cutting on ground beetles (Coleoptera, Carabidae) in a Norway spruce stand in Southern Bavaria (Höglwald). Biodiv Conserv 14:1989–2007CrossRefGoogle Scholar
  35. Huhta V (1971) Succession in the spider communities of the forest floor after clear-cutting and prescribed buerning. Ann Zool Fennici 8:483–542Google Scholar
  36. Hyvärinen E, Kouki J, Martikainen P, Lappalainen H (2005) Short-term effects of controlled burning and green-tree retention on beetle (Coleoptera) assemblages in managed boreal forests. For Ecol Manag 212:315–332CrossRefGoogle Scholar
  37. Hyvärinen E, Kouki J, Martikainen P (2006) Fire and green-tree retention in conservation of red-listed and rare deadwood-dependent beetles in Finnish boreal forests. Conserv Biol 20(6):1711–1719PubMedCrossRefGoogle Scholar
  38. Kaila L, Martikainen P, Punttila P (1997) Dead trees left in clear-cuts benefit saproxylic Coleoptera adapted to natural disturbances in boreal forest. Biodiv Conserv 18:1–18CrossRefGoogle Scholar
  39. Kim K (1993) Biodiversity, conservation and inventory: why insects matter. Biodiv Conserv 2:191–214CrossRefGoogle Scholar
  40. Kohm KA, Franklin JE (1997) Creating a forestry for the 21st century: the science of ecosystem management. Island Press, ChicagoGoogle Scholar
  41. Koivula M (2002) Alternative harvesting methods and boreal carabid beetles (Coleoptera, Carabidae). For Ecol Manag 167:103–121CrossRefGoogle Scholar
  42. Kusnezov M (1957) Numbers of species of ants in faunas of different latitudes. Evolution 11:298–299CrossRefGoogle Scholar
  43. Lanfranco D (1977) Entomofauna asociada a los bosques de Nothofagus pumilio en la región de Magallanes. 1º parte: Monte Alto (Río Rubens, Última Esperanza). An Inst Patagon 8:319–346Google Scholar
  44. Lanfranco D (1991) Sinopsis de los insectos que atacan bosques de lenga (Nothofagus pumilio (Poepp. et Endl.) Krass.) en Magallanes. An Inst Patagonia, Serie Cs Nat 20:89–93Google Scholar
  45. Lemieux JP, Lindgren BS (2004) Ground beetle responses to patch retention harvesting in high elevation forests of British Columbia. Ecography 27:557–566CrossRefGoogle Scholar
  46. Lencinas MV, Martínez Pastur G, Medina M, Busso C (2005) Richness and density of birds in timber Nothofagus pumilio forests and their unproductive associated environments. Biodiv Conserv 14:2299–2320CrossRefGoogle Scholar
  47. Lencinas MV, Martínez Pastur G, Anderson CB, Busso C (2008a) The value of timber quality forests for insect conservation on Tierra del Fuego Island compared to associated non-timber quality stands. J Ins Conserv 12:461–475CrossRefGoogle Scholar
  48. Lencinas MV, Martínez Pastur G, Rivero P, Busso C (2008b) Conservation value of timber quality versus associated non-timber quality stands for understory diversity in Nothofagus forests. Biodiv Conserv 17:2579–2597CrossRefGoogle Scholar
  49. Lencinas MV, Martínez Pastur G, Solán R, Gallo E, Cellini JM (2008c) Forest management with variable retention impact over bryophyte communities of Nothofagus pumilio understory. Forstarchiv 79:77–82Google Scholar
  50. Lencinas MV, Martínez Pastur G, Gallo E, Cellini JM (2009) Alternative silvicultural practices with variable retention improve bird conservation in managed South Patagonian forests. For Ecol Manag 258:472–480CrossRefGoogle Scholar
  51. Lencinas MV, Martínez Pastur G, Gallo E, Cellini JM (2011) Alternative silvicultural practices with variable retention to improve understory plant diversity conservation in southern Patagonian forests. For Ecol Manag 262:1236–1250CrossRefGoogle Scholar
  52. Lenski FT (1982) The impact of forest cutting on the diversity of ground beetle (Coleoptera, Carabidae) in the southern Appalachians. Ecol Monogr 7:385–390Google Scholar
  53. Lewis CN, Whitfield JB (1999) Braconid wasp (Hymenoptera: Braconidae) diversity in forest plots under different silvicultural methods. Environ Entom 28(6):986–997Google Scholar
  54. Lindenmayer DB, Franklin JF, Lõhmus A, Baker SC, Bauhus J, Beese W, Brodie A, Kiehl B, Kouki J, Martínez Pastur G, Messier C, Neyland M, Palik B, Sverdrup-Thygeson A, Volney WJA, Wayne A, Gustafsson L (2012) A major shift to the retention approach for forestry can help resolve some global forest sustainability issues. Conserv Lett 5:421–431CrossRefGoogle Scholar
  55. Lizarralde MS, Escobar J (2000) Mamíferos exóticos en la Tierra del Fuego. Ciencia Hoy 10:52–63Google Scholar
  56. Manly B (1994) Multivariate statistical methods. A primer. Chapman and Hall, LondonGoogle Scholar
  57. Martikainen P, Kaila L (2004) Sampling saproxylic beetles: lessons from a 10-year monitoring study. Biol Conserv 120:171–181CrossRefGoogle Scholar
  58. Martikainen P, Siitonen J, Punttila P, Kaila L, Rauh J (2000) Species richness of Coleoptera in mature managed and old-growth boreal forests in southern Finland. Biol Conserv 94:199–209CrossRefGoogle Scholar
  59. Martikainen P, Kouki J, Heikkala O (2006) The effects of green tree retention and subsequent prescribed burning on ground beetles (Coleoptera: Carabidae) in boreal pine-dominated forests. Ecography 29:659–670CrossRefGoogle Scholar
  60. Martínez Pastur G, Lencinas MV (2005) El manejo forestal en los bosques de Nothofagus pumilio en Tierra del Fuego. IDIA-XXI 5(8):107–110Google Scholar
  61. Martínez Pastur G, Peri P, Vukasovic R, Vaccaro S, Piriz Carrillo V (1997) Site index equation for Nothofagus pumilio Patagonian forest. Phyton 6(1/2):55–60Google Scholar
  62. Martínez Pastur G, Cellini JM, Peri P, Vukasovic R, Fernández C (2000) Timber production of Nothofagus pumilio forests by a shelterwood system in Tierra del Fuego (Argentina). For Ecol Manag 134:153–162CrossRefGoogle Scholar
  63. Martínez Pastur G, Peri P, Fernández C, Staffieri G, Lencinas MV (2002) Changes in understory species diversity during the Nothofagus pumilio forest management cycle. J For Res 7(3):165–174CrossRefGoogle Scholar
  64. Martínez Pastur G, Lencinas MV, Peri P, Moretto A, Cellini JM, Mormeneo I, Vukasovic R (2007) Harvesting adaptation to biodiversity conservation in sawmill industry: technology innovation and monitoring program. J Technol Manag Innov 2(3):58–70Google Scholar
  65. Martínez Pastur G, Lencinas MV, Cellini JM, Peri PL, Soler R (2009) Timber management with variable retention in Nothofagus pumilio forests of Southern Patagonia. For Ecol Manag 258:436–443CrossRefGoogle Scholar
  66. Martínez Pastur G, Cellini JM, Lencinas MV, Barrera M, Peri PL (2010) Environmental variables influencing regeneration of Nothofagus pumilio in system with combined aggregated and dispersed retention. For Ecol Manag 261:178–186CrossRefGoogle Scholar
  67. Martínez Pastur G, Cellini JM, Lencinas MV, Barrera M, Peri PL (2011) Environmental variables influencing regeneration of Nothofagus pumilio in system with combined aggregated and dispersed retention. For Ecol Manag 261:178–186CrossRefGoogle Scholar
  68. Marvaldi AE, Lanteri AA (2005) Key to higher taxa of South American weevils based on adult characters (Coleoptera, Curculionoidea). Rev Chil Hist Nat 78:65–87CrossRefGoogle Scholar
  69. Massaccesi G, Roig FA, Martínez Pastur G, Barrera MD (2008) Growth patterns of Nothofagus pumilio trees along altitudinal gradients in Tierra del Fuego, Argentina. Trees 22:245–255CrossRefGoogle Scholar
  70. Matteri CM, Schiavone MM (2002) Catálogo de los musgos (Bryophyta) de la región Fueguina en Argentina y Chile. Rev Museo Arg Cs Nat 4:111–138Google Scholar
  71. Matveinen-Huju K, Niemelä J, Rita H, O’Hara RB (2006) Retention-tree groups in clear-cuts: do they constitute ‘life-boats’ for spiders and carabids? For Ecol Manag 2006:119–135CrossRefGoogle Scholar
  72. McArdle B, Gaston K (1992) Comparing population variabilities. Oikos 64:610–612CrossRefGoogle Scholar
  73. McCune B, Mefford MJ (1999) Multivariate analysis of ecological data. Version 4.0. MjM software. Gleneden Beach, OregonGoogle Scholar
  74. McQuillan P (1993) Nothofagus (Fagaceae) and its invertebrate fauna—an overview and preliminary synthesis. Biol J Linn Soc 49:317–354Google Scholar
  75. Michaels K, McQuillan PB (1995) Impact of commercial forest management on geophilous carabid beetles (Coleoptera: Carabidae) in tall, wet Eucalyptus obliqua forest in southern Tasmania. Aust J Ecol 20:316–323CrossRefGoogle Scholar
  76. Mitchell SJ, Beese WJ (2002) The retention system: reconciling variable retention with the principles of silvicultural systems. For Chron 78:397–403CrossRefGoogle Scholar
  77. Mittermeier RA, Mittermeier CG, Brooks TM, Pilgrim JD, Konstant WR, da Fonseca GAB, Kormos C (2003) Wilderness and biodiversity conservation. Proc Natl Acad Sci 100:10309–10313PubMedCentralPubMedCrossRefGoogle Scholar
  78. Moore DM, Goodall RNP (1977) La flora adventicia de Tierra del Fuego. Ann Inst Patagon 8:263–274Google Scholar
  79. Niemelä J (1990) Habitat distribution of carabid beetles in Tierra del Fuego, South America. Entom Fennica 29:3–16Google Scholar
  80. Niemelä J (2001) Carabid beetles (Coleopterae: Carabidae) and habitat fragmentation: a review. Eur J Entomol 98:127–132CrossRefGoogle Scholar
  81. Niemelä J, Halme E, Lahti T, Pajunen T, Puntilla P (1988) The distribution of carabid beetles in fragments of old coniferous taiga and adjacent managed forest. Ann Zool Fennici 25:107–119Google Scholar
  82. Niemelä J, Langor D, Spence J (1993) Effects of clear-cut harvesting on boreal ground-beetle assemblages (Coleoptera: Carabidae) in western Canada. Conserve Biol 7(3):551–561CrossRefGoogle Scholar
  83. Noreika N, Kotze DJ (2012) Forest edge contrasts have a predictable effect on the spatial distribution of carabid beetles in urban forests. J Ins Conserv 16:867–881CrossRefGoogle Scholar
  84. North M, Chen J, Smith G, Krakowiak L, Franklin J (1996) Initial response of understory plant diversity and overstory tree diameter growth to a green tree retention harvest. Northwest Sci 70:24–35Google Scholar
  85. Novotný V, Basset Y (2000) Rare species in communities of tropical insect herbivores: pondering the mystery of singletons. Oikos 89:564–572CrossRefGoogle Scholar
  86. Oliver I, Beattie AJ (1993) A possible method for the rapid assessment of biodiversity. Conserv Biol 7(3):562–568CrossRefGoogle Scholar
  87. Ozanne CMP, Speight MR, Hambler C, Evans HF (2000) Isolated trees and forest patches: patterns in canopy arthropod abundance and diversity in Pinus sylvestris (Scots Pine). Forest Ecol Manag 137:53–63Google Scholar
  88. Pérez V, Mutschke E, Vera M (1997) Hexápodos (Arthropoda: Parainsecta e Insecta) en territorios en proceso de desglaciación y revegetación en Fuego-Patagonia (Chile). An Inst Patagonia, Serie Cs Nat 25:57–76Google Scholar
  89. Posadas P (2012) Species composition and geographic distribution of Fuegian Curculionidae (Coleoptera: Curculionoidea). Zootaxa 3303:1–36Google Scholar
  90. Promis A, Caldentey J, Ibarra M (2010) Microclima en el interior de un bosque de Nothofagus pumilio y el efecto de una corta de regeneración. Bosque 31:129–139CrossRefGoogle Scholar
  91. Pulido F, Díaz B, Martínez Pastur G (2000) Incidencia del ramoneo del guanaco (Lama guanicoe) sobre la regeneración de lenga (Nothofagus pumilio) en bosques de Tierra del Fuego, Argentina. Inv Agr: Sist Rec For 9:381–394Google Scholar
  92. Ramírez C, Correa M, Figueroa H, San Martín J (1985) Variación del hábito y hábitat de Nothofagus antarctica en el centro sur de Chile. Bosque 6:55–73Google Scholar
  93. Richards OW, Davies RG (1984) Tratado de entomología Imms. Volumen 2: Clasificación y Biología. Omega, BarcelonaGoogle Scholar
  94. Roig-Juñent S (2000) The subtribes and genera of the Tribe Broscini (Coleoptera: Carabidae): cladistic analysis, taxonomic treatment, and biogeographical considerations. Bull Am Mus Nat Hist, Nueva YorkGoogle Scholar
  95. Roig-Juñent S, Domínguez M (2001) Diversidad de la familia Carabidae (Coleopterae) en Chile. Rev Chil Hist Nat 74:549–571CrossRefGoogle Scholar
  96. Romoser WS, Stoffolano JG (1998) The science of entomology. WCB/McGraw-Hill, BostonGoogle Scholar
  97. Rosenfeld JM, Navarro Cerrillo RM, Guzmán Álvarez JR (2006) Regeneration of Nothofagus pumilio (Poepp. et Endl.) Krasser forests after five years of seed tree cutting. J Environ Manag 78:44–51CrossRefGoogle Scholar
  98. Rosenvald R, Lõhmus A (2008) For what, when, and where is green-tree retention better than clear-cutting? A review of the biodiversity aspects. For Ecol Manag 255:1–15CrossRefGoogle Scholar
  99. Ross H (1973) Introducción a la entomología general y aplicada. Omega, BarcelonaGoogle Scholar
  100. Safranyik BL (1985) Infestation incidence and mortality in white spruce stands by Dendroctonus rufipennis Kirby (Coleoptera, Scolytidae) in central British Columbia. J Appl Entomol 99:86–93Google Scholar
  101. Spagarino C, Martínez Pastur G, Peri P (2001) Changes in Nothofagus pumilio forest biodiversity during the forest management cycle: insects. Biodiv Conserv 10:2077–2092CrossRefGoogle Scholar
  102. Spence J, Volney WJA, Sidders D, Luchkow S, Vinge T, Oberle F, Gilmore D, Bielech JP, Wearmouth P, Edwards J, Bothwell P, Shorthouse D, Wilkinson D, Brais S (2002) The EMEND Experience. In: Veeman T (ed) Advances in forest management: from knowledge to practice, proceedings of SFMN conference, 13–15 Nov. SFMN Network, Edmonton, pp 40–44Google Scholar
  103. Spitzer K, Lepš J (1988) Determinants of temporal variation in moth abundance. Oikos 53:31–36CrossRefGoogle Scholar
  104. Spitzer K, Regmánek M, Soldán T (1984) The fecundity and long-term variability in abundance of noctuid moths (Lepidoptera, Noctuidae). Oecologia 62:91–93CrossRefGoogle Scholar
  105. Stary P (1994) Aphid parasitoid fauna (Hymenoptera, Aphidiidae) of the southern beech (Nothofagus) forest. Stud Neotrop Fauna Environ 29:87–98Google Scholar
  106. Thiele HU (1964) Carabid beetles in their environments. Springer, BerlinGoogle Scholar
  107. Werner SM, Raffa KF (2000) Effects of forest management practices on the diversity of ground-occurring beetles in mixed northern hardwood forests of the Great Lakes Region. For Ecol Manag 139:135–155CrossRefGoogle Scholar
  108. Willott SJ (2001) Species accumulation curves and the measure of sampling effort. J Appl Ecol 38:484–486CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • María Vanessa Lencinas
    • 1
  • Guillermo Martínez Pastur
    • 1
  • Emilce Gallo
    • 2
  • Juan Manuel Cellini
    • 3
  1. 1.Centro Austral de Investigaciones Científicas (CONICET)UshuaiaArgentina
  2. 2.Administración de Parques NacionalesParque Nacional Tierra del FuegoUshuaiaArgentina
  3. 3.Facultad de Ciencias Agrarias y ForestalesUniversidad Nacional de La PlataLa PlataArgentina

Personalised recommendations