Advertisement

Journal of Insect Conservation

, Volume 16, Issue 1, pp 25–38 | Cite as

Understory spider diversity in two remnants of tropical montane cloud forest in Chiapas, Mexico

  • Julieta Maya-Morales
  • Guillermo Ibarra-Núñez
  • Jorge L. León-Cortés
  • Francisco Infante
ORIGINAL PAPER

Abstract

We evaluated the spider diversity of a tropical montane cloud forest understory in two nearby sites with different degree of human disturbance at the Biosphere Reserve Volcán Tacaná, Chiapas, Mexico. The study was conducted over a 24 days period distributed in 6 months in 2009, covering dry and rainy seasons. A total of 8,370 spiders (1,208 adults and 7,162 juveniles) were collected. Determined specimens (7,747) represented 112 species and morphospecies, 71 genera and 22 families. The results showed that human disturbance has an influence on spider communities: species richness was significantly higher in the preserved site as regards to the disturbed site. Despite their proximity, the composition of spider communities showed only a moderate similarity between the two sites. No differences in abundance were found among sites when considering the whole sample, but sites differed clearly when seasons were analyzed separately. The rainy season had a negative effect on the abundance of spiders in the preserved site. Although the spider community structure was very similar between sites, there was a trend towards a greater species evenness in the preserved site for the whole sampling period and for the dry season.

Keywords

Araneae Species richness Human disturbance Season effects 

Notes

Acknowledgments

We thank J. A. López-Méndez, E. Senties-Celma and E. R. Chamé-Vázquez for the long hours of assistance in collecting specimens. J. Valle-Mora assisted in the statistical analyses and J. H. López-Urbina with the map design. We extend our gratitude to two anonymous reviewers who suggested valuable improvements to the manuscript. Spider specimens were collected in the Volcán Tacaná Biosphere Reserve under a permit to G. Ibarra-Núñez (SGPA/DGVS/00034/09). J. Maya-Morales was supported by a fellowship from the Consejo Nacional de Ciencia y Tecnología (CONACYT).

References

  1. Acosta S (2004) Afinidades de la flora genérica de algunos bosques mesófilos de montaña de nordeste, centro y sur de México: enfoque fenético. An Inst Biol UNAM (Botanical Series) 75:61–72Google Scholar
  2. Álvares ESS, Machado EO, Azevedo CS, De-Maria M (2004) Composition of the spider assemblage in an urban forest reserve in southeastern Brazil and evaluation of a two sampling method protocols of species richness estimates. Rev Iber Aracnol 10:185–194Google Scholar
  3. Balfour RA, Rypstra AL (1998) The influence of habitat structure on spider density in no-till soybean agroecosystem. J Arachnol 26:221–226Google Scholar
  4. Brierton BM, Allen DC, Jennings DT (2003) Spider fauna of sugar maple and white ash in northern and central New York State. J Arachnol 31:350–362CrossRefGoogle Scholar
  5. Bubb P, May I, Miles L, Sayer J (2004) Cloud forest agenda. UNEP-WCMC, CambridgeGoogle Scholar
  6. Cardoso P (2009) Standardization and optimization of arthropod inventories—the case of Iberian spiders. Biodivers Conserv 18:3949–3962CrossRefGoogle Scholar
  7. Cardoso P, Silva I, Oliveira NG, Serrano ARM (2007) Seasonality of spiders (Araneae) in Mediterranean ecosystems and its implications in the optimum sampling period. Ecol Entomol 32:516–526CrossRefGoogle Scholar
  8. Cardoso P, Henriques SS, Gaspar C, Crespo LC, Carvalho R, Schmidt JB, Sousa P, Szuts T (2009) Species richness and composition assessment of spiders in a Mediterranean scrubland. J Insect Conserv 13:45–55CrossRefGoogle Scholar
  9. Challenger A (1998) La zona ecológica templada húmeda (bosque mesófilo de montaña). In: Challenger A (ed) Utilización y conservación de los ecosistemas terrestres. Pasado, presente y futuro. CONABIO, Instituto de Biología, UNAM-Agrupación Sierra Madre AC, Mexico DF, pp 443–518Google Scholar
  10. Chen KC, Tso IM (2004) Spider diversity on Orchid island, Taiwan: a comparison between habitats receiving different degrees of human disturbance. Zool Stud 43:598–611Google Scholar
  11. Coddington JA, Griswold C, Davila D, Penaranda E, Larcher S (1991) Designing and testing sampling protocols to estimate biodiversity in tropical systems. In: Dulley E (ed) The unity of evolutionary biology, vol 1. Proceedings of the Fourth international congress of systematics and evolutionary biology. Dioscorides Press, Portland, Oregon, pp 44–46Google Scholar
  12. Coddington JA, Young LH, Coyle FA (1996) Estimating spider species richness in a Southern Appalachian cove hardwood forest. J Arachnol 24:111–128Google Scholar
  13. Coddington JA, Agnarsson I, Miller JA, Kuntner M, Hormiga G (2009) Undersampling bias: the null hypothesis for singleton species in tropical arthropod surveys. J Animal Ecol 78:573–584CrossRefGoogle Scholar
  14. Collwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Philos Trans R Soc Lond ser B-Biol Sci 345:101–118CrossRefGoogle Scholar
  15. Colwell RK (2007) Estimates: statistical estimation of species, richness and shared species from samples. Version 8.0. user’s guide and application. http://www.viceroy.eeb.uconn.edu/estimates. Accessed 8 April 2008
  16. Deloya C, Ordoñez M (2008) Escarabajos (Insecta: Coleoptera). In: Manson RH, Hernández V, Gallina S, Mehltreter K (eds) Agroecosistemas cafetaleros de Veracruz: biodiversidad, manejo y conservación. Instituto de Ecología, Xalapa, México, pp 123–134Google Scholar
  17. Deloya C, Parra V, Delfín H (2007) Fauna de coleópteros Scarabaeidae Laparostici y Trogidae (Coleoptera, Scarabaeoidea) asociados al bosque mesófilo de montaña, cafetales bajo sombra y comunidades derivadas en el centro de Veracruz, México. Neotrop Entomol 36:5–21PubMedCrossRefGoogle Scholar
  18. Dias MFR, Brescovit AD, Menezes M (2005) Aranhas de solo (Arachnida: Araneae) em diferentes fragmentos florestais no sul da Bahia, Brasil. Biota Neotropica 5(n1a). http://www.biotaneotropica.org.br/v5n1a/pt/abstract?inventory+BN010051a2005. Accessed 28 January 2011
  19. Dobyns JR (1997) Effects of sampling intensity on the collection of spider (Araneae) species and the estimation of spider richness. Environ Entomol 26:150–162Google Scholar
  20. Floren A, Deeleman C (2005) Diversity of arboreal spiders in primary and disturbed tropical forests. J Arachnol 33:323–333CrossRefGoogle Scholar
  21. Flórez E (1999) Estructura y composición de una comunidad de arañas (Araneae) en un bosque muy seco tropical de Colombia. Bol Entomol Venez 14:37–51Google Scholar
  22. Foelix R (1996) Biology of spiders. Harvard Univ, Press, CambridgeGoogle Scholar
  23. Gallina S, González A, Manson RH (2008) Mamíferos pequeños y medianos. In: Manson RH, Hernández V, Gallina S, Mehltreter K (eds) Agroecosistemas cafetaleros de Veracruz: biodiversidad, manejo y conservación. Instituto de Ecología, Xalapa, México, pp 161–180Google Scholar
  24. García JG, Toledo T (2008) Epífitas vasculares: bromelias y orquídeas. In: Manson RH, Hernández V, Gallina S, Mehltreter K (eds) Agroecosistemas cafetaleros de Veracruz: biodiversidad, manejo y conservación. Instituto de Ecología, Xalapa, México, pp 69–82Google Scholar
  25. Gibson CWD, Hambler C, Brown VK (1992) Changes in spider (Araneae) assemblages in relation to succession and grazing management. J Appl Ecol 29:132–142CrossRefGoogle Scholar
  26. González A, Murrieta R (2008) Anfibios y reptiles. In: Manson RH, Hernández V, Gallina S, Mehltreter K (eds) Agroecosistemas cafetaleros de Veracruz: biodiversidad, manejo y conservación. Instituto de Ecología, Xalapa, México, pp 135–147Google Scholar
  27. Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391CrossRefGoogle Scholar
  28. Gotelli NJ, Entsminger GL (2004) EcoSim. Null models software for ecology. version 7.0 acquired intelligence Inc. and Kesey-Bear, Jerico, Vermont. http://www.garyentsminger.com/ecosim/index. Accessed 25 July 2009
  29. Greenstone MH (1984) Determinants of web spider diversity: vegetation structural diversity vs. prey availability. Oecologia 62:299–304CrossRefGoogle Scholar
  30. Halaj J, Ross DW, Moldenke AR (1998) Habitat structure and prey availability as predictors of the abundance and community organization of spiders in western Oregon forest canopies. J Arachnol 26:203–220Google Scholar
  31. Halaj J, Ross DW, Moldenke AR (2000) Importance of habitat structure to the arthropod food-web in Douglas-fir canopies. Oikos 90:139–152CrossRefGoogle Scholar
  32. Hatley CL, MacMahon JA (1980) Spider community organization: seasonal variation and the role of vegetation architecture. Environ Entomol 9:632–639Google Scholar
  33. Haughton AJ, Bell JR, Boatman ND, Wilcox A (1999) The effects of different rates of the herbicide glyphosate on spiders in arable field margins. J Arachnol 27:249–254Google Scholar
  34. Heredia G, Arias RM (2008) Hongos saprobios y endomicorrizógenos en suelos. In: Manson RH, Hernández V, Gallina S, Mehltreter K (eds) Agroecosistemas cafetaleros de Veracruz: biodiversidad, manejo y conservación. Instituto de Ecología, Xalapa, México, pp 193–212Google Scholar
  35. Hernández V, Dzul JF (2008) Moscas (Insecta: Diptera). In: Manson RH, Hernández V, Gallina S, Mehltreter K (eds) Agroecosistemas cafetaleros de Veracruz: biodiversidad, manejo y conservación. Instituto de Ecología, Xalapa, México, pp 95–105Google Scholar
  36. Hodge MA (1987) Macrohabitat selection by the orb weaving spider, Micrathena gracilis. Psyche 94:347–361CrossRefGoogle Scholar
  37. Höfer H, Brescovit AD (2001) Species and guild structure of a Neotropical spider assemblage (Araneae) from Reserva Ducke, Amazonas, Brazil. Andrias 15:99–119Google Scholar
  38. Ibarra-Núñez G (1990) Los artrópodos asociados a cafetos en un cafetal mixto del Soconusco, Chiapas, México. I Variedad y abundancia. Folia Entomol Mex 79:207–231Google Scholar
  39. Ibarra-Núñez G, García JA (1998) Diversidad de tres familias de arañas tejedoras (Araneae: Araneidae, Tetragnathidae, Theridiidae) en cafetales del Soconusco, Chiapas, México. Folia Entomol Mex 102:11–20Google Scholar
  40. Ibarra-Núñez G, García A, Moreno M (1995) La comunidad de artrópodos de dos cafetales con diferentes prácticas agrícolas (orgánico y convencional): el caso de las arañas. Memorias XXX Congreso Nacional de la Sociedad Mexicana de Entomología. Texcoco, Estado de México, pp 12–13Google Scholar
  41. Ibarra-Núñez G, Moreno EB, Ruiz A, Trujillo M, García A (2004) Las arañas tejedoras (Araneidae, Tetragnathidae, Theridiidae y Uloboridae) de una plantación de cacao en Chiapas, México. In: Morales A et al. (eds) Entomologia mex. v. 3. Colegio de Posgraduados, Montecillo, Estado de México pp 38–41Google Scholar
  42. Indicatti RP, Candiani DF, Brescovit AD, Japyassú HF (2005) Diversidade de aranhas de solo (Arachnida, Araneae) na bacia do Reservatório do Guarapiranga, São Paulo, Brasil. Biota Neotropica 5(1a). http://www.biotaneotropica.org.br/v5n1a/pt/abstract?inventory+BN011051a2005. Accessed 28 January 2011
  43. INEGI Instituto Nacional de Estadística y Geografía (1981) Carta de climas. Escala 1:250 000Google Scholar
  44. JMP (1989–2000) Version 4.0 SAS Institute Inc., Cary, North CarolinaGoogle Scholar
  45. Kremen C, Colwell RK, Erwin TL, Murphy DD, Noss RF, Sanjayan MA (1993) Terrestrial arthropod assemblages: their use in conservation planning. Conserv Biol 7:796–808CrossRefGoogle Scholar
  46. Langellotto GA, Denno RF (2004) Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia 139:1–10PubMedCrossRefGoogle Scholar
  47. Lubin YD (1978) Seasonal abundance and diversity of web-building spiders in relation to habitat structure on Barro Colorado Island, Panama. J Arachnol 6:31–51Google Scholar
  48. Magurran A (2004) Measuring biological diversity. Blackwell Publishing, OxfordGoogle Scholar
  49. Marc P, Canard A, Ysnel F (1999) Spiders (Araneae) useful for pest limitation and bioindication. Agr Ecosyst Environ 74:229–273CrossRefGoogle Scholar
  50. Mason RR, Jennings DT, Paul HG, Wickman BE (1997) Patterns of spider (Araneae) abundance during an outbreak of western spruce budworm (Lepidoptera: Tortricidae). Environ Entomol 26:507–518Google Scholar
  51. Mehltreter K (2008) Helechos. In: Manson RH, Hernández V, Gallina S, Mehltreter K (eds) Agroecosistemas cafetaleros de Veracruz: biodiversidad, manejo y conservación. Instituto de Ecología, Xalapa, México, pp 83–93Google Scholar
  52. Minitab Statistical Software (2007) Version 15.1 State College, PA: Minitab, Inc. Published at: http://www.minitab.com
  53. Miranda F (1975) La vegetación de Chiapas. Primera parte. Gobierno del Estado. Tuxtla Gutiérrez, Chiapas, MéxicoGoogle Scholar
  54. Moreno-Molina EB, Ibarra-Núñez G, García-Ballinas JA (2001) Diversidad de arañas en follaje de cacao, en el Soconusco, Chiapas, Mexico. Memorias XXXVI Congreso Nacional de la Sociedad Mexicana de Entomología. Querétaro, Querétaro, p 17Google Scholar
  55. Newton AC, Cayuela L, Echeverria C, Armesto J, del Castillo RF et al. (2009) Toward integrated analysis of human impacts on forest biodiversity: lessons from Latin America. Ecol Soc 14:2. http://www.ecologyandsociety.org/vol14/iss2/art2. Accessed 15 July 2010Google Scholar
  56. Noel NM, Finch OD (2010) Effects of the abandonment of alpine summer farms on spider assemblages (Araneae). J Insect Conserv. doi: 10.1007/s10841-010-9272-8
  57. Ozanne CMP, Speight MR, Hambler C, Evans HF (2000) Isolated trees and forest patches: patterns in canopy arthropod abundance and diversity in Pinus sylvestris (Scots Pine). For Ecol Manag 137:53–63CrossRefGoogle Scholar
  58. Pineda E, Halffter G (2004) Species diversity and habitat fragmentation: frogs in a tropical montane landscape in Mexico. Biol Conserv 117:499–508CrossRefGoogle Scholar
  59. Pineda E, Moreno C, Escobar F, Halffter G (2005) Frog, bat, and dung beetle diversity in the cloud Forest and coffee agroecosystems of Veracruz, Mexico. Conserv Biol 19:400–410CrossRefGoogle Scholar
  60. Pinkus MA, León-Cortés JL, Ibarra-Núñez G (2006) Spider diversity in a tropical habitat gradient in Chiapas, Mexico. Diversity Distrib 12:61–69CrossRefGoogle Scholar
  61. Ramírez-Marcial N (2003) Survival and growth of tree seedling in anthropogenically disturbed Mexican montane rain forest. J Veg Sci 14:881–890CrossRefGoogle Scholar
  62. Ramírez-Marcial N, González-Espinosa M, Williams-Linera G (2001) Anthropogenic disturbance and tree diversity in Montane Rain Forests in Chiapas, Mexico. For Ecol Manag 154:311–326CrossRefGoogle Scholar
  63. Riechert SE, Tracy CR (1975) Thermal balance and prey availability: bases for a model relating web-site characteristics to spider reproductive success. Ecology 56:265–284CrossRefGoogle Scholar
  64. Robinson MH, Lubin YD, Robinson B (1974) Phenology, natural history and species diversity of web-building spiders on three transects at Wau, New Guinea. Pac Insects 16:117–164Google Scholar
  65. Rubio GD, Corronca JA, Damborsky MP (2008) Do spider diversity and assemblages change in different contiguous habitats? A case study in the protected habitats of the Humid Chaco Ecoregion, Northeast Argentina. Environ Entomol 37:419–430PubMedCrossRefGoogle Scholar
  66. Rüger N, Williams-Linera G, Kissling WD, Huth A (2008) Long-term impacts of fuelwood extraction on a Mexican cloud forest. Ecosystems 11:868–881CrossRefGoogle Scholar
  67. Russell A, Stork NE (1994) Abundance and diversity of spiders from the canopy of tropical rainforests with particular reference to Sulawesi, Indonesia. J Trop Ecol 10:545–558CrossRefGoogle Scholar
  68. Rypstra AL, Carter PE, Balfour RA, Marshall SD (1999) Architectural features of agricultural habitats and their impact on the spider inhabitants. J Arachnol 27:371–377Google Scholar
  69. Rzedowski J (1996) Análisis preliminar de la flora vascular de los bosques mesófilos de montaña de México. Acta Bot Mex 35:25–44Google Scholar
  70. Samu F, Sunderland KD, Szinetár C (1999) Scale-dependent dispersal and distribution patterns of spiders in agricultural systems: a review. J Arachnol 27:325–332Google Scholar
  71. Silva D (1996) Species composition and community structure of peruvian rainforest spiders: A case study from a seasonally inundated forest along the Samiria river. Rev Suisse Zool vol hors sér: 597–610Google Scholar
  72. Silva D, Coddington JA (1996) Spiders of Pakitza (Madre de Dios, Peru): species richness and notes on community structure. In: Wilson DE, Sandoval A (eds) Manu: the biodiversity of southeastern Peru. Smithsonian Institution, Washington DC, pp 253–311Google Scholar
  73. Sørensen LL (2003) Stratification of the spider fauna in a Tanzanian forest. In: Basset Y, Novotny V, Miller SE, Kitching RL (eds) Arthropods of tropical forest: spatio-temporal dynamics and resource use in the canopy. Cambridge University Press, Cambridge, pp 92–101Google Scholar
  74. Sørensen LL (2004) Composition and diversity of the spider fauna in the canopy of a montane forest in Tanzania. Biodivers Conserv 13:437–452CrossRefGoogle Scholar
  75. Sørensen LL, Coddington JA, Scharff N (2002) Inventorying and estimating subcanopy spider diversity using semiquantitative sampling methods in an Afromontane forest. Environ Entomol 31:319–330CrossRefGoogle Scholar
  76. Sosa VJ, Hernández E, Hernández D, Castro AA (2008) Murciélagos. In: Manson RH, Hernández V, Gallina S, Mehltreter K (eds) Agroecosistemas cafetaleros de Veracruz: biodiversidad, manejo y conservación. Instituto de Ecología, Xalapa, México, pp 181–192Google Scholar
  77. Stadtmuller T (1987) Cloud forest in the humid tropics. A bibliographic review. United Nations University, Tokyo and CATIE, Turrialba, Costa RicaGoogle Scholar
  78. Tejeda C, Gordon C (2008) Aves. In: Manson RH, Hernández V, Gallina S, Mehltreter K (eds) Agroecosistemas cafetaleros de Veracruz: biodiversidad, manejo y conservación. Instituto de Ecología, Xalapa, México, pp 149–160Google Scholar
  79. Toti DS, Coyle FA, Miller JA (2000) A structured inventory of Appalachian grass bald and heath bald spider assemblages and a test of species richness estimator performance. J Arachnol 28:329–345CrossRefGoogle Scholar
  80. Valenzuela J, Quiroz L, Martínez DL (2008) Hormigas (Insecta: Hymenoptera: Formicidae). In: Manson RH, Hernández V, Gallina S, Mehltreter K (eds) Agroecosistemas cafetaleros de Veracruz: biodiversidad, manejo y conservación. Instituto de Ecología, Xalapa, México, pp 107–121Google Scholar
  81. Warui CM, Villet VH, Young TP, Joqué R (2005) Influence of grazing by large mammals on the spider community of a Kenyan Savanna biome. J Arachnol 33:269–279CrossRefGoogle Scholar
  82. Willet T (2001) Spiders and other arthropods as indicators in old-growth versus logged redwood stands. Restor Ecol 9:410–420CrossRefGoogle Scholar
  83. Williams-Linera G (2007) El bosque de niebla del centro de Veracruz: ecología, historia y destino en tiempos de fragmentación y cambio climático. CONABIO–Instituto de Ecología, Xalapa, MéxicoGoogle Scholar
  84. Williams-Linera G, López-Campos A (2008) Estructura y diversidad de la vegetación leñosa. In: Manson RH, Hernández V, Gallina S, Mehltreter K (eds) Agroecosistemas cafetaleros de Veracruz: biodiversidad, manejo y conservación. Instituto de Ecología, Xalapa, México, pp 55–68Google Scholar
  85. Wise DH (1993) Spiders in ecological webs. Cambridge Univ, Press, CambridgeCrossRefGoogle Scholar
  86. Yanoviak SP, Kragh G, Nadkarni NM (2003) Spider assemblages in Costa Rican cloud forests: effects of forest level and forest age. Stud Neotrop Fauna Environ 38:145–154CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Julieta Maya-Morales
    • 1
  • Guillermo Ibarra-Núñez
    • 1
  • Jorge L. León-Cortés
    • 2
  • Francisco Infante
    • 1
  1. 1.Departamento de Entomología TropicalEl Colegio de la Frontera SurChiapasMexico
  2. 2.Departamento de Ecología y Sistemática TerrestreEl Colegio de la Frontera SurChiapasMexico

Personalised recommendations