Journal of Insect Conservation

, Volume 14, Issue 2, pp 115–124 | Cite as

The impact of apiculture on the genetic structure of wild honeybee populations (Apis mellifera) in Sudan

  • Mogbel A. A. El-Niweiri
  • Robin F. A. Moritz
Original Paper


Apiculture often relies on the importation of non-native honeybees (Apis mellifera) and large distance migratory beekeeping. These activities can cause biodiversity conflicts with the conservation of wild endemic honeybee subspecies. We studied the impact of large scale honeybee imports on managed and wild honeybee populations in Sudan, a centre of biodiversity of A. mellifera, using as set of linked microsatellite DNA loci and mitochondrial DNA markers. The mitochondrial DNA analyses showed that all wild honey bees exclusively belonged to African haplotypes. However, we revealed non-native haplotypes in managed colonies on apiaries reflecting unambiguous evidence of imports from European stock. Moreover, we found significantly higher linkage disequilibria for microsatellite markers in wild populations in regions with apiculture compared to wild populations which had no contact to beekeeping. Introgression of imported honeybees was only measurable at the population level in close vicinity to apicultural activities but not in wild populations which represent the vast majority of honeybees in Sudan.


Apis mellifera  Beekeeping Conservation Honeybee Microsatellite DNA Mitochondrial DNA Introgression Competition DNA 



Financial support was granted to MAAEN by the National Centre for Research, Khartoum, Sudan and German Academic Exchange Service (DAAD) fellowship and the Europe Strategic Research Project BEE SHOP (RFAM).


  1. Akratanakul P, Burgett M (1975) Varroa jacobsoni: a prospective pest of honeybees in many parts of the world. Bee World 56:119–120Google Scholar
  2. Clarke KE, Rinderer TE, Franck RP, Quezada-euán JG, Oldroyd BP (2002) The Africanization of honey bees (Apis mellifera L.) of the Yucatan: a study of a massive hybridization event across time. Evolution Int J org Evolution 56:1462–1474Google Scholar
  3. Collet T, Ferreira KM, Arias MC, Soares AEE, Del Lama MA (2006) Genetic structure of Africanized honeybee populations (Apis mellifera L.) from Brazil and Uruguay viewed through mitochondrial DNA COI–COII patterns. Heredity 97:329–335CrossRefPubMedGoogle Scholar
  4. Cornuet JM, Aries F (1980) Number of sex alleles in a sample of honeybee colonies. Apidologie 11:87–93CrossRefGoogle Scholar
  5. Crane E (1978) The Varroa mite. Bee World 59:164Google Scholar
  6. De la Ruá P, Serrano J, Galian J (1998) Mitochondrial variability in the Canary Islands honeybees (Apis mellifera L.). Mol Ecol 7:1543–1547CrossRefPubMedGoogle Scholar
  7. El-Niweiri MAA, Omer E, Moritz RFA (2007) Distribution of native and non-native honey bees in Sudan. In: Kirchner WH (ed) The Individual and the Group in the Insect Societies. Proceedings of the 20th IUSSI conference of German speaking Section, Bochum, pp 46Google Scholar
  8. El-Niwieri MAA, Moritz RFA (2008) Mitochondrial discrimination of honeybees (Apis mellifera) of Sudan. Apidologie 39:566–573CrossRefGoogle Scholar
  9. El-Sarrag MSA, Nagi SKA (1989) Studies on some factors affecting mating of queen honeybees in Khartoum area Sudan. Proceedings of the fourth international conference on apiculture in tropical climates, Cairo, pp 20–24Google Scholar
  10. Estoup A, Solignac M, Cornuet JM (1994) Precise assessment of the number of patrilines and of genetic relatedness in honeybee colonies. Proc R Soc Lond B 258:1–7CrossRefGoogle Scholar
  11. Estoup A, Garnery L, Solignac M, Cornuet JM (1995) Microsatellite variation in honeybee (Apis mellifera L.) populations: hierarchical genetic structure and test of the infinite allele and stepwise mutation models. Genetics 140:679–695PubMedGoogle Scholar
  12. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure II. Linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedGoogle Scholar
  13. Fletcher DJC (1978) The African bee, Apis mellifera adansonii, in Africa. Annu Rev Entomol 23:151–171CrossRefGoogle Scholar
  14. Franck P (1999) Approche génétique des questions évolutives associétes à la sociobiologie et à la phylogéographie de l’abeille domestique (Apis mellifera L.). Ph.D. Thesis, Ecole Nationale Superieure Agronomique, MontpellierGoogle Scholar
  15. Franck P, Garnery L, Solignac M, Cornuet JM (1998) The origin of west European subspecies of honeybees (Apis mellifera): new insights from microsatellite and mitochondrial data. Evolution Int J org Evolution 52:1119–1134Google Scholar
  16. Franck P, Garnery L, Celebrano G, Solignac M (2000) Hybrid origins of the Italian honeybees, Apis mellifera ligustica and A. m. sicula. Mol Ecol 9:907–923CrossRefPubMedGoogle Scholar
  17. Franck P, Garnery L, Loiseau A, Oldroyd BP, Hepburn HR, Solignac M, Cornuet JM (2001) Genetic diversity of the honeybee in Africa: microsatellite and mitochondrial data. Heredity 86:420–430CrossRefPubMedGoogle Scholar
  18. Garnery L, Cornuet JM, Solignac M (1992) Evolutionary history of the honeybee Apis mellifera inferred from mitochondrial DNA analysis. Mol Ecol 1:145–154CrossRefPubMedGoogle Scholar
  19. Garnery L, Solignac M, Celebrano G, Cornuet JM (1993) A simple test using restricted PCR-amplified mitochondrial DNA to study the genetic structure of Apis mellifera L. Experientia 49:1016–1021CrossRefGoogle Scholar
  20. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Heredity 86:485–486Google Scholar
  21. Hall HG, Muralidharan K (1989) Evidence from mitochondrial DNA that African honey bees spread as continuous maternal lineages. Nature 339:211–213CrossRefPubMedGoogle Scholar
  22. Hall HG, Smith DR (1991) Distinguishing African and European honeybee matrilines using amplified mitochondrial DNA. Proc Natl Acad Sci USA 88:4548–4552CrossRefPubMedGoogle Scholar
  23. Hepburn HR, Radloff SE (1998) Honeybees of Africa. Springer, HeidelbergGoogle Scholar
  24. Illgner PM, Nel EL, Robertson MP (1998) Beekeeping and local self-reliance in rural Southern Africa. Geog Rev 88:349–362CrossRefGoogle Scholar
  25. Jaffé R, Dietemann V, Crewe RM, Moritz RFA (2009) Temporal variation in the genetic structure of a drone congregation area: an insight into the population dynamics of wild African honeybees (Apis mellifera scutellata). Mol Ecol 18(7):1511–1522CrossRefPubMedGoogle Scholar
  26. Johannsemeier MF (2001) Beekeeping in South Africa. Plant protection. Research Institute. Handbook No. 14, 3rd edn. Agricultural Research Council of South Africa, PretoriaGoogle Scholar
  27. Koeniger N, Koeniger G (1991) An evolutionary approach to mating behaviour and drone copulatory organs in Apis. Apidologie 22:581–590CrossRefGoogle Scholar
  28. Kraus FB, Neumann P, Scharpenberg H, van Praagh J, Moritz RFA (2003) Male mating success of honeybee colonies (Apis mellifera L.). J Evol Biol 16:903–913CrossRefGoogle Scholar
  29. Kraus FB, Neumann P, van Praagh J, Moritz RFA (2004) Sperm limitation and the evolution of extreme polyandry in honeybees (Apis mellifera L.). Behav Ecol Sociobiol 55:494–501CrossRefGoogle Scholar
  30. Lattorff HMG, Moritz RFA, Crewe RM, Solignac M (2007) Control of reproductive dominance by the thelytoky gene in honeybees. Biol Lett 3:292–295CrossRefPubMedGoogle Scholar
  31. Lebdigrissa K, Msadda K, Cornuet JM, Fresnaye J (1991) The influence of European honeybees introduced in Tunisia on the Tunisian breed—Apis mellifera intermissa. Landbouwtijdschrift 44:631–636Google Scholar
  32. Lewontin RC (1964) The interaction of selection and linkage. I. General considerations; heterotic models. Genetics 49:49–67PubMedGoogle Scholar
  33. Moritz RFA, Southwick EE (1992) Bees as superorganisms—an evolutionary reality. Springer-Verlag, HeidelbergGoogle Scholar
  34. Moritz RFA, Härtel S, Neumann P (2005) The western honeybee (Apis mellifera L.): an invasive species? Ecoscience 12:289–301CrossRefGoogle Scholar
  35. Moritz RFA, Kraus FB, Kryger P, Crewe RM (2007) The size of wild honeybee populations (Apis mellifera) and its implications for the conservation of honeybees. J Insect Conserv 11:391–397CrossRefGoogle Scholar
  36. Morse RA, Flottum K (1997) Honey bee pests, predators, and diseases, 3rd edn. AI Root, MedinaGoogle Scholar
  37. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  38. Neumann P, Moritz RFA (2002) The Cape honeybee phenomenon: the sympatric evolution of a social parasite in real time? Behav Ecol Sociobiol 52:271–281CrossRefGoogle Scholar
  39. Neumann P, van Praagh JP, Moritz RFA, Dustmann JH (1999) Testing the reliability of a potential island mating apiary using DNA microsatellites. Apidologie 30:257–276CrossRefGoogle Scholar
  40. Oldroyd BP (1999) Coevolution while you wait: Varroa jacobsoni, a new parasite of western honeybees. Tree 14:312–315PubMedGoogle Scholar
  41. Park SDE (2001) Trypanotolerance in West African cattle and the population genetic effects of selection. Dissertation, University of DublinGoogle Scholar
  42. Paton DC (1996) Overview of feral and managed honeybees in Australia: distribution, abundance, extent of interactions with native biota, evidence of impacts and future research. Australian Nature Conservation Agency, CanberraGoogle Scholar
  43. Pinto MA, Rubink WL, Coulson RN, Patton JC, Johnston JS (2004) Temporal pattern of Africanization in a feral honey bee population from Texas inferred from mitochondrial DNA. Evolution Int J org Evolution 58:1047–1055Google Scholar
  44. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  45. Raymond M, Rousset F (1995a) An exact test for population differentiation. Evolution Int J org Evolution 49:1280–1283Google Scholar
  46. Raymond M, Rousset F (1995b) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Heredity 86:248–249Google Scholar
  47. Rinderer TE, Stelzer JA, Oldroyd BP, Buco SM, Rubink WL (1991) Hybridization between European and Africanized honey bees in the neotropical Yucatan Peninsula. Science 253:309–311CrossRefPubMedGoogle Scholar
  48. Ruttner F (1969) Biometrische Charakterisierung der österreichischen Carnica-Biene. Z f Bienenforschung 9:469–503Google Scholar
  49. Ruttner F (1988) Biogeography and taxonomy of honeybees. Springer-Verlag, BerlinGoogle Scholar
  50. Ruttner F, Ruttner H (1972) Untersuchungen über die Flugaktivität und das Paarungsverhalten der Drohnen. V. Drohnensammelplätze und Paarungsdistanz. Apidologie 3:203–232CrossRefGoogle Scholar
  51. Schneider SS, Leamy LJ, Lewis LA, Degrandi-Hoffman G (2003) The influence of hybridization between African and European honeybees, Apis mellifera, on asymmetries in wing size and shape. Evolution Int J org Evolution 57:2350–2364Google Scholar
  52. Schneider SS, DeGrandi-Hoffman G, Smith DR (2004) The African honey bee: factors contributing to a successful biological invasion. Annu Rev Entomol 49:351–376CrossRefGoogle Scholar
  53. Second G (1975) L’apiculture dans les pays d’afrique du nord, deuxième partie. Bull Tech Apic 2:9–20Google Scholar
  54. Shaibi T, Lattorff HMG, Moritz RFA (2008) A microsatellite DNA toolkit for studying population structure in Apis mellifera. Mol Ecol Resour 8:1034–1036CrossRefGoogle Scholar
  55. Shaibi T, Fuchs S, Moritz RFA. (2009) Morphological study of Honeybees (Apis mellifera) from Libya. Apidologi 40:97–105CrossRefGoogle Scholar
  56. Shi YY, He L (2005) SHEsis a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res 15(2):97–98CrossRefPubMedGoogle Scholar
  57. Solignac M, Vautrin D, Loiseau A, Mougel F, Baudry E, Estoup A, Garnery L, Haberl M, Cornuet JM (2003) Five hundred and fifty microsatellite markers for the study of the honeybee (Apis mellifera). Mol Ecol Notes 3:307–311CrossRefGoogle Scholar
  58. Taylor OR (1985) African bees: potential impact in the United States. Bull Entomol Soc Am 31:14–24Google Scholar
  59. Taylor OR (1988) Ecology and economic impact of African and Africanized honey bees. In: Needham GR, Page RE, Delfinado-Baker M, Bowman CE (eds) Africanized honey bees and bee mites. Ellis Horwood, Chichester, pp 29–41Google Scholar
  60. Visscher PK, Baptista FC (1996) Initial rapid invasion has slowed in the US. Calif Agric 51:22–25CrossRefGoogle Scholar
  61. Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100© as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513PubMedGoogle Scholar
  62. Wang J (2004) Sibship reconstruction from genetic data with typing errors. Genetics 166:1963–1979CrossRefPubMedGoogle Scholar
  63. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution Int J org Evolution 38:1358–1370Google Scholar
  64. Whitfield CW, Behura SK, Berlocher SH, Clark AG, Johnston JS, Sheppard WS, Smith DR, Suarez AV, Weaver D, Tsutsui ND (2006) Thrice out of Africa: ancient and recent expansions of the honeybee Apis mellifera. Science 314:642–645CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Mogbel A. A. El-Niweiri
    • 1
    • 2
  • Robin F. A. Moritz
    • 1
  1. 1.Institut für BiologieMartin-Luther-Universität Halle-WittenbergHalle a.d. SaaleGermany
  2. 2.Apiculture Research UnitNational Centre for ResearchKhartoumSudan

Personalised recommendations